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Moderate Deviation Principles for Stochastic Di¤erential
Equations with Jumps

Amarjit Budhiraja�, Paul Dupuisy, Arnab Gangulyz

January 15, 2014

Abstract

Moderate deviation principles for stochastic di¤erential equations driven by a Poisson
random measure (PRM) in �nite and in�nite dimensions are obtained. Proofs are based on
a variational representation for expected values of positive functionals of a PRM.

MSC 2010 subject classi�cations:
60F10, 60H15, 60J75, 60J25

Keywords: Moderate deviations, large deviations, Poisson random measures, stochastic
partial di¤erential equations.

1 Introduction

Large deviation principles for small noise di¤usion equations have been extensively studied in
the literature. Since the original work of Freidlin and Wentzell [63, 29], model assumptions have
been signi�cantly relaxed and many extensions have been studied in both �nite-dimensional
and in�nite-dimensional settings. In [9, 11] a general approach for studying large deviation
problems in such settings has been introduced that is based on a variational representation for
expectations of positive functionals of an in�nite dimensional Brownian motion. This approach
has now been adopted for the study of large deviation problems for a broad range of stochastic
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partial di¤erential equation based models, particularly those arising in stochastic �uid dynamics,
and also for settings where the coe¢ cients in the model have little regularity. We refer the reader
to [12] for a partial list of references. Large deviation problems for �nite dimensional di¤usions
with jumps have been studied by several authors (see for example [53, 27]). In contrast, it is only
recently that the analogous problems for in�nite dimensional stochastic di¤erential equations
(SDE) have received attention [60, 62]. In [12] a variational representation for expected values
of positive functionals of a general Poisson random measure (or more generally, functions that
depend both on a Poisson random measure and an in�nite dimensional Brownian motion) was
derived. As in the Brownian motion case, the representation is motivated in part by applications
to large deviation problems, and [12] illustrates how the representation can be applied in a simple
�nite dimensional setting. In [10] the representation was used to study large deviation properties
of a family of in�nite dimensional SDE driven by a Poisson random measure (PRM).

The goal of the current work is to study moderate deviation problems for stochastic dynam-
ical systems. In such a study one is concerned with probabilities of deviations of a smaller order
than in large deviation theory. Consider for example an independent and identically distributed
(iid) sequence fYigi�1 of Rd-valued zero mean random variables with common probability law
�. A large deviation principle (LDP) for Sn =

Pn
i=1 Yi will formally say that for c > 0

P(jSnj > nc) � expf�n inffI(y) : jyj � cgg;

where for y 2 Rd, I(y) = sup�2Rdfh�; yi � log
R
Rd exph�; yi�(dy)g. Now let fang be a positive

sequence such that an " 1 and n�1=2an ! 0 as n ! 1 (e.g. an = n1=4). Then a moderate
deviation principle (MDP) for Sn will say that

P(jSnj > n1=2anc) � expf�a2n inffI0(y) : jyj � cgg;

where I0(y) = 1
2



y;��1y

�
and � = Cov(Y ). Thus the moderate deviation principle gives

estimates on probabilities of deviations of order n1=2an which is of lower order than n and with
a rate function that is a quadratic form. Moderate deviation principles have been extensively
studied in Mathematical Statistics. Early research considered the setting of iid sequences and
arrays (see [57, 56, 1, 2, 3, 61, 59, 30]). Empirical processes in general topological spaces have
been studied in [7, 8, 22, 13, 50, 17, 4]. The setting of weakly dependent sequences was covered in
[35, 36, 14, 37, 6, 33, 20, 38, 24, 39, 21], and MDPs for occupation measures of Markov chains and
general additive functionals of Markov chains were considered in [32, 64, 18, 19, 15, 40, 16, 31].

Moderate deviation principles for continuous time stochastic dynamical systems are less well
studied. The paper [51] considers a �nite-dimensional two scale di¤usion model under stochastic
averaging. Additional results involving moderate deviations and the averaging principle were
obtained in [42, 41, 52]. The paper [44] considered a certain di¤usion process with Brownian
potentials and derived moderate deviation estimates for its longtime behavior. Moderate de-
viation results in the context of statistical inference for �nite dimensional di¤usions have been
considered in [25, 45, 34]. None of the above results consider stochastic dynamical systems with
jumps or in�nite dimensional models.

2
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In this paper we study moderate deviation principles for �nite and in�nite dimensional SDE
with jumps. For simplicity we consider only settings where the noise is given in terms of a
PRM and there is no Brownian component. However, as noted in Remark 2.9, the more general
case where both Poisson and Brownian noises are present can be treated similarly. In �nite
dimensions, the basic stochastic dynamical system we study takes the form

X"(t) = x0 +

Z t

0
b(X"(s))ds+

Z
X�[0;t]

"G(X"(s�); y)N "�1(dy; ds):

Here b : Rd ! Rd and G : Rd � X! Rd are suitable coe¢ cients and N "�1 is a Poisson random
measure on XT = X � [0; T ] with intensity measure "�1�T = "�1� 
 �T , where X is a locally
compact Polish space, � is a locally �nite measure on X, �T is the Lebesgue measure on [0; T ]
and " > 0 is the scaling parameter. Under conditions X" will converge in probability (in a
suitable path space) to X0 given as the solution of the ODE

_X0(t) = b(X0(t)) +

Z
X
G(X0(t); y)�(dy); X0(0) = x0:

The moderate deviations problem for fX"g">0 corresponds to studying asymptotics of

("=a2(")) logP(Y " 2 �);

where Y " = (X" � X0)=a(") and a(") ! 0, "=a2(") ! 0 as " ! 0. In this paper we establish
a moderate deviations principle under suitable conditions on b and G. We in fact give a rather
general su¢ cient condition for a moderate deviation principle to hold for systems driven by
Poisson random measures (see Theorem 2.3). This su¢ cient condition covers many �nite and
in�nite dimensional models of interest. A typical in�nite dimensional model corresponds to the
SPDE

dX"(u; t) = (LX"(u; t) + �(X"(u; t)))dt+ "

Z
X
G(X"(u; t�); u; y)N "�1(ds; dy) (1.1)

X"(u; 0) = x(u); u 2 O � Rd:

where L is a suitable di¤erential operator, O is a bounded domain in Rd and the equation is
considered with a suitable boundary condition on @O. Here N "�1 is a PRM as above. The
solution of such a SPDE has to be interpreted carefully, since typically solutions for which
LX"(u; t) can be de�ned classically do not exist. We follow the framework of [48], where the
solution space is described as the space of RCLL trajectories with values in the dual of a suitable
nuclear space (see Section 2.4 for precise de�nitions). Roughly speaking, a nuclear space is given
as an intersection of a countable collection of Hilbert spaces, where the di¤erent spaces may be
viewed as �function spaces�with varying degree of regularity. Since the action of the di¤erential
operator L on a function will typically produce a function with lesser regularity, this framework of
nested Hilbert spaces enables one to e¢ ciently investigate existence and uniqueness of solutions
of SPDE of the form (1.1). Another common approach for studying equations of the form (1.1)
is through a mild solution formulation [58]. Although not investigated here we expect that
analogous results can be established using such a formulation.

3

6



January 15, 2014

Large and moderate deviation approximations can provide qualitative and quantitative in-
formation regarding complex stochastic models such as (1.1). For example, an equation studied
in some detail at the end of this paper models the concentration of pollutants in a waterway.
Depending on the event of interest either the large and moderate deviation approximation could
be appropriate, in which case one could use the rate function to identify the most likely interac-
tions between the pollution source and the dynamics of the waterway that lead to a particular
outcome, such as exceeding an allowed concentration. However, the rate function only gives an
asymptotic approximation for probabilities of such outcomes and the resulting error due to the
use of this approximation cannot be eliminated.

An alternative is to use numerical schemes such as Monte Carlo, which have the property
that if a large enough number of good quality samples can be generated, then an arbitrary level
of accuracy can be achieved. While this may be true in principle, it is in practice di¢ cult when
considering events of small probability, since many samples are required for errors that are small
relative to the quantity being computed. The issue is especially relevant for a problem modeled
by an equation as complex as (1.1), since the generation of even a single sample could be relatively
expensive. Hence an interesting potential use of the results of the present paper are to importance
sampling and related accelerated Monte Carlo methods [5, 54]. If in fact the moderate deviation
approximation is relevant, the relatively simple form of the corresponding rate function suggests
that many of the constructions needed to implement an e¤ective importance sampling scheme
[23] would be simpler than in the corresponding large deviation context.

We now make some comments on the technique of proof. As in [10], the starting point is
the variational representation for expectations of positive functionals of a PRM from [12]. The
usefulness of variational representation in proving large deviation or moderate deviation type
results lies in the fact that it allows one to bypass the traditional route of approximating the
original sequence of solutions by discretizations; the latter approach is particularly cumbersome
for SPDEs and more so for SPDEs driven by Poisson random measure. Moreover the variational
representation approach does not require proving exponential tightness and other exponential
probability estimates that are frequently some of the most technical parts of a traditional large
deviations argument. A key step in our approach is to prove the tightness for controlled versions
of the state processes given that the costs for controls are suitably bounded. For example, to
prove a moderate deviation principle for SPDEs of the form (1.1), the tightness of the sequence
of controlled processes �Y ";'" needs to be established, where

�Y ";'" =
1

a(")
( �X";'" �X0) (1.2)

d �X";'"(u; t) =
�
L �X";'"(u; t) + b( �X";'(u; t))

�
dt+

Z
XT
"G( �X";'"(u; t�); y) N "�1'"(dt; dy)

and the controls '" : X� [0; T ]! [0;1) are predictable processes satisfying LT ('") � Ma2(")
for some constantM . Here LT denotes the large deviation rate function associated with Poisson
random measures (see (2.3)) and N "�1'" is a controlled Poisson random measure, namely a
counting process with intensity "�1'"(x; s)�T (dx; ds) (see (2.1) for a precise de�nition). In
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comparison (cf. [10]), to prove a large deviation principle for X", the key step is proving the
tightness of the controlled processes �X";'" with the controls '" satisfying LT ('") � M for
some constant M . The proof of this tightness property relies on the fact that the estimate
LT ('

") � M implies tightness of '" in a suitable space. Although in the moderate deviations
problem one has the stronger bound LT ('") �Ma2(") on the cost of controls, the mere tightness
of '" does not imply the tightness of �Y ";'" . Instead one needs to study tightness properties of
 " = ('" � 1)=a("). In general  " may not be in L2(�T ) and one of the challenges is to identify
a space where suitable tightness properties of the centered and normalized controls f "g can be
established. The key idea is to split  " into two terms, one of which lies in a closed ball in L2(�T )
(independent of ") and the other approaches 0 in a suitable manner. Estimates on each of the
two terms (see Lemma 3.2) are key ingredients in the proof and are used many times in this
work, in particular to obtain uniform in " moment estimates on centered and scaled processes
of the form (1.2).

The rest of the paper is organized as follows. Section 2.1 contains some background on
PRMs and the variational representation from [12]. In Section 2.2 we present a general moderate
deviation principle for measurable functionals of a PRM. Although this result concerns a large
deviations principle with a certain speed, we refer to it as a MDP since its typical application
is to the proof of moderate deviation type results. This general result covers many stochastic
dynamical system models in �nite and in�nite dimensions. Indeed, by using the general theorem
from Section 2.2, a moderate deviation principle for �nite dimensional SDE driven by PRM
is established in Section 2.3 and an in�nite-dimensional model is considered in Section 2.4.
Sections 3 to 5 are devoted to proofs. The result for the in�nite dimensional setting requires
many assumptions on the model. In Section 6 we show that these assumptions are satis�ed for
an SPDE that has been proposed as a model for the spread of a pollutant with Poissonian point
sources in a waterway.

Notation:

The following notation is used. For a topological space E , denote the corresponding Borel
�-�eld by B(E). We use the symbol �)� to denote convergence in distribution. For a Polish
space X, denote by C([0; T ] : X) and D([0; T ] : X) the space of continuous functions and
right continuous functions with left limits from [0; T ] to X, endowed with the uniform and
Skorokhod topology, respectively. For a metric space E , denote by Mb(E) and Cb(E) the space
of real bounded B(E)=B(R)-measurable functions and real bounded and continuous functions
respectively. For Banach spaces B1; B2, L(B1; B2) will denote the space of bounded linear
operators from B1 to B2. For a measure � on E and a Hilbert space H, let L2(E ; �;H) denote
the space of measurable functions f from E to H such that

R
E kf(v)k

2�(dv) <1, where k � k is
the norm on H. When H = R and E is clear from the context we write L2(�).

For a function x : [0; T ] ! E , we use the notation xt and x(t) interchangeably for the
evaluation of x at t 2 [0; T ]. A similar convention will be followed for stochastic processes. We
say a collection fX"g of E-valued random variables is tight if the distributions of X" are tight
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in P(E) (the space of probability measures on E).

A function I : E ! [0;1] is called a rate function on E if for each M < 1, the level set
fx 2 E : I(x) �Mg is a compact subset of E .

Given a collection fb(")g">0 of positive reals, a collection fX"g">0 of E-valued random vari-
ables is said to satisfy the Laplace principle upper bound (respectively, lower bound) on E with
speed b(") and rate function I if for all h 2 Cb(E)

lim sup
"!0

b(") logE
�
exp

�
� 1

b(")
h(X")

��
� � inf

x2E
fh(x) + I(x)g;

and, respectively,

lim inf
"!0

b(") logE
�
exp

�
� 1

b(")
h(X")

��
� � inf

x2E
fh(x) + I(x)g:

The Laplace principle is said to hold for fX"g with speed b(") and rate function I if both the
Laplace upper and lower bounds hold. It is well known that when E is a Polish space, the family
fX"g satis�es the Laplace principle upper (respectively lower) bound with a rate function I on
E if and only if fX"g satis�es the large deviation upper (respectively lower) bound for all closed
sets (respectively open sets) with the rate function I. For a proof of this statement we refer to
Section 1.2 of [27].

2 Preliminaries and Main Results

2.1 Poisson Random Measure and a Variational Representation

Let X be a locally compact Polish space and let MFC(X) be the space of all measures � on
(X;B(X)) such that �(K) < 1 for every compact K � X. Endow MFC(X) with the usual
vague topology. This topology can be metrized such that MFC(X) is a Polish space [12]. Fix
T 2 (0;1) and let XT = X � [0; T ]. Fix a measure � 2 MFC(X), and let �T = � 
 �T , where
�T is Lebesgue measure on [0; T ].

A Poisson random measure n on XT with mean measure (or intensity measure) �T is a
MFC(XT )-valued random variable such that for each B 2 B(XT ) with �T (B) < 1, n(B) is
Poisson distributed with mean �T (B) and for disjoint B1; :::; Bk 2 B(XT ), n(B1); :::;n(Bk) are
mutually independent random variables (cf. [46]). Denote by P the measure induced by n on
(MFC(XT );B(MFC(XT ))). Then letting M =MFC(XT ), P is the unique probability measure
on (M;B(M)) under which the canonical map, N : M ! M; N(m) :

= m, is a Poisson random
measure with intensity measure �T . Also, for � > 0, P� will denote a probability measure on
(M;B(M)) under which N is a Poisson random measure with intensity ��T . The corresponding
expectation operators will be denoted by E and E�, respectively.

6
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Let F 2Mb(M). We now present a variational representation from [12] for� logE�(exp[�F (N)]),
in terms of a Poisson random measure constructed on a larger space. Let Y = X � [0;1) and
YT = Y� [0; T ]. Let �M =MFC(YT ) and let �P be the unique probability measure on ( �M;B( �M))
under which the canonical map, �N : �M ! �M; �N(m) :

= m, is a Poisson random measure with
intensity measure ��T = �
�1
�T , where �1 is Lebesgue measure on [0;1). The correspond-
ing expectation operator will be denoted by �E. Let Ft

:
= �f �N((0; s]�A) : 0 � s � t; A 2 B(Y)g

be the �-algebra generated by �N , and let �Ft denote the completion under �P. We denote by �P
the predictable �-�eld on [0; T ]� �M with the �ltration f �Ft : 0 � t � Tg on ( �M;B( �M)). Let �A+
[resp. �A] be the class of all (B(X)
 �P)=B[0;1) [resp. (B(X)
 �P)=B(R)]-measurable maps from
XT � �M to [0;1) [resp. R]. For ' 2 �A+, de�ne a counting process N' on XT by

N'((0; t]� U) =
Z
U�[0;1)�[0;t]

1[0;'(x;s)](r) �N(dx dr ds); t 2 [0; T ]; U 2 B(X): (2.1)

We think of N' as a controlled random measure, with ' selecting the intensity for the points at
location x and time s, in a possibly random but non-anticipating way. When '(x; s; �m) � � 2
(0;1), we write N' = N �. Note that N � has the same distribution with respect to �P as N has
with respect to P�.

De�ne ` : [0;1)! [0;1) by

`(r) = r log r � r + 1; r 2 [0;1): (2.2)

For any ' 2 �A+ and t 2 [0; T ] the quantity

Lt(') =

Z
X�[0;t]

`('(x; s; !))�T (dx ds) (2.3)

is well de�ned as a [0;1]-valued random variable. Let fKn � X; n = 1; 2; : : :g be an increasing
sequence of compact sets such that [1n=1Kn = X. For each n let

�Ab;n
:
=
�
' 2 �A+ : for all (t; !) 2 [0; T ]� �M, n � '(x; t; !) � 1=n

if x 2 Kn and '(x; t; !) = 1 if x 2 Kc
ng

and let �Ab = [1n=1 �Ab;n.

The following is a representation formula proved in [12]. For the second equality in the
theorem see the proof of Theorem 2.4 in [10].

Theorem 2.1 Let F 2Mb(M). Then for � > 0

� logE�(e�F (N)) = � log �E(e�F (N
�)) = inf

'2 �A+
�E
h
�LT (') + F (N

�')
i

= inf
'2 �Ab

�E
h
�LT (') + F (N

�')
i
:
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2.2 A General Moderate Deviation Result

For " > 0, let G" be a measurable map from M to U, where U is some Polish space. Let
a : R+ ! R+ be such that as "! 0

a(")! 0 and b(") =
"

a2(")
! 0: (2.4)

In this section we will formulate a general su¢ cient condition for the collection G"("N "�1) to
satisfy a large deviation principle with speed b(") and a rate function that is given through a
suitable quadratic form.

For " > 0 and M <1, consider the spaces

SM+;"
:
= f' : X� [0; T ]! R+j LT (') �Ma2(")g (2.5)

SM"
:
= f : X� [0; T ]! Rj  = ('� 1)=a("); ' 2 SM+;"g:

We also let

UM+;"
:
=
�
� 2 �Ab : �(�; �; !) 2 SM+;"; �P-a.s.

	
(2.6)

UM"
:
=
�
� 2 �A : �(�; �; !) 2 SM" ; �P-a.s.

	
:

The norm in the Hilbert space L2(�T ) will be denoted by k � k2 and B2(r) denotes the ball
of radius r in L2(�T ). Given a map G0 : L2(�T )! U and � 2 U, let

S� � S�[G0] = f 2 L2(�T ) : � = G0( )g

and de�ne I by

I(�) = inf
 2S�

�
1

2
k k22

�
: (2.7)

Here we follow the convention that the in�mum over an empty set is +1.

We now introduce a su¢ cient condition that ensures that I is a rate function and the col-
lection Y " � G"("N "�1) satis�es a LDP with speed b(") and rate function I. A set f "g � �A
with the property that sup">0 k "k2 �M a.s. for some M <1 will be regarded as a collection
of B2(M)-valued random variables, where B2(M) is equipped with the weak topology on the
Hilbert space L2(�T ). Since B2(M) is weakly compact, such a collection of random variables
is automatically tight. Throughout this paper B2(M) will be regarded as the compact metric
space obtained by equipping it with the weak topology on L2(�T ).

Suppose ' 2 SM+;", which we recall implies LT (') � Ma(")2. Then as shown in Lemma
3.2 below, there exists �2(1) 2 (0;1) that is independent of " and such that  1fj j<1=a(")g 2
B2((M�2(1))

1=2), where  = ('� 1)=a(").

8
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Condition 2.2 For some measurable map G0 : L2(�T )! U, the following two conditions hold.

(a) Given M 2 (0;1), suppose that g"; g 2 B2(M) and g" ! g. Then

G0(g")! G0(g):

(b) Given M 2 (0;1), let f'"g">0 be such that for every " > 0, '" 2 UM+;" and for some
� 2 (0; 1],  "1fj "j��=a(")g )  in B2((M�2(1))

1=2) where  " = ('" � 1)=a("). Then

G"("N "�1'")) G0( ):

Theorem 2.3 Suppose that the functions G" and G0 satisfy Condition 2.2. Then I de�ned by
(2.7) is a rate function and fY " � G"("N "�1)g satis�es a large deviation principle with speed
b(") and rate function I.

In the next two sections we will present two applications. The �rst is to a general family of
�nite dimensional SDE driven by Poisson noise and the second is to certain SPDE models with
Poisson noise.

2.3 Finite Dimensional SDEs

In this section we study SDEs of the form

X"(t) = x0 +

Z t

0
b(X"(s))ds+

Z
X�[0;t]

"G(X"(s�); y)N "�1(dy; ds); (2.8)

where the coe¢ cients b and G satisfy the following condition.

Condition 2.4 The functions b : Rd ! Rd and G : Rd � X! Rd are measurable and satisfy

(a) for some Lb 2 (0;1)
jb(x)� b(x0)j � Lbjx� x0j; x; x0 2 Rd;

(b) for some LG 2 L1(�) \ L2(�)

jG(x; y)�G(x0; y)j � LG(y)jx� x0j; x; x0 2 Rd; y 2 X;

9
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(c) for some MG 2 L1(�) \ L2(�)

jG(x; y)j �MG(y)(1 + jxj); x 2 Rd; y 2 X:

The following result follows by standard arguments (see Theorem IV.9.1 of [46]).

Theorem 2.5 Fix x0 2 Rd, and assume Condition 2.4. The following conclusions hold.

(a) For each " > 0 there is a measurable map �G" : M ! D([0; T ] : Rd) such that for any
probability space (~
; ~F ; ~P ) on which is given a Poisson random measure n" on XT with
intensity measure "�1�T , ~X" = �G"("n") is a ~Ft = �fn"(B � [0; s]); s � t; B 2 B(X)g
adapted process that is the unique solution of the stochastic integral equation

~X"(t) = x0 +

Z t

0
b( ~X"(s))ds+

Z
X�[0;t]

"G( ~X"(s�); y)n"(dy; ds); t 2 [0; T ]: (2.9)

In particular X" = �G"("N "�1) is the unique solution of (2.8).

(b) There is a unique X0 in C([0; T ] : Rd) that solves the equation

X0(t) = x0 +

Z t

0
b(X0(s))ds+

Z
X�[0;t]

G(X0(s); y)�(dy)ds; t 2 [0; T ]: (2.10)

We now state a LDP for fY "g, where

Y " � 1

a(")
(X" �X0); (2.11)

and a(") is as in (2.4). For this we will need the following additional condition on the coe¢ cients.
Let

mT = sup
0�t�T

jX0(t)j: (2.12)

For a di¤erentiable function f : Rd ! Rd let Df(x) = (@fi(x)=@xj)i;j , x 2 Rd, and let jDf jop
denote the operator norm of the matrix Df . We de�ne a class of functions by

H :
=

�
h : X! R : 9 � > 0; s.t. 8� with �(�) <1;

Z
�
exp(�h2(y))�(dy) <1

�
: (2.13)

Condition 2.6 (a) The functions LG and MG are in the class H.

10
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(b) For every y 2 X, the maps x 7! b(x) and x 7! G(x; y) are di¤erentiable. For some
LDb 2 (0;1)

jDb(x)�Db(x0)jop � LDbjx� x0j; x; x0 2 Rd

and for some LDG 2 L1(�)

jDxG(x; y)�DxG(x
0; y)jop � LDG(y)jx� x0j; x; x0 2 Rd; y 2 X:

With mT <1 as in (2.12)

sup
fx2Rd:jxj�mT g

Z
X
jDxG(x; y)jop�(dy) <1:

We note that all locally bounded and measurable real functions on X are in H.

The following result gives a Moderate Deviations Principle for �nite dimensional SDE.

Theorem 2.7 Suppose that Conditions 2.4 and 2.6 hold. Then fY "g satis�es a large deviation
principle in D([0; T ] : Rd) with speed b(") and the rate function given by

�I(�) = inf
 

�
1

2
k k22

�
;

where the in�mum is taken over all  2 L2(�T ) such that

�(t) =

Z t

0
[Db(X0(s))]�(s)ds+

Z
X�[0;t]

[DxG(X
0(s); y)]�(s)�(dy)ds

+

Z
X�[0;t]

 (y; s)G(X0(s); y)�(dy)ds; t 2 [0; T ]: (2.14)

Note that (2.14) has a unique solution � 2 C([0; T ] : Rd). In particular, �I(�) = 1 for all
� 2 D([0; T ] : Rd) n C([0; T ] : Rd).

The following theorem gives an alternative expression for the rate function. From Condition
2.4(c) it follows that y 7! Gi(X

0(s); y) is in L2(�) for all s 2 [0; T ] and i = 1; : : : ; d, where
G = (G1; : : : ; Gd)

0. For i = 1; : : : ; d, let ei : X � [0; T ] ! R be measurable functions such that
for each s 2 [0; T ], fei(�; s)gdi=1 is an orthonormal collection in L2(�) and the linear span of the
collection is same as that of fGi(X0(s); �)gdi=1. De�ne A : [0; T ] ! Rd�d such that, for each
s 2 [0; T ],

Aij(s) = hGi(X0(s); �); ej(s; �)iL2(�); i; j = 1; : : : ; d:

For � 2 D([0; T ] : Rd) let

I(�) = inf
u

1

2

Z T

0
ju(s)j2ds

11
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where the in�mum is taken over all u 2 L2([0; T ] : Rd) such that

�(t) =

Z t

0
[Db(X0(s)) +G1(X

0(s))]�(s)ds+

Z t

0
A(s)u(s)ds; t 2 [0; T ] (2.15)

and G1(x) =
R
XDxG(x; y)�(dy):

Theorem 2.8 Under the conditions of Theorem 2.7, I = �I.

Remark 2.9 (1) Theorem 2.8 in particular says that the rate function for fY "g is the same
as that associated with the large deviation principle with speed " for the Gaussian process

dZ"(t) = A1(t)Z
"(t)dt+

p
"A(t)dW (t); Z"(0) = x0;

whereW is a standard d-dimensional Brownian motion and A1(t) = Db(X0(t))+G1(X
0(t)).

(2) One can similarly establish moderate deviations results for systems that have both Poisson
and Brownian noise. In particular the following result holds. Suppose � : Rd ! Rd�d is a
Lipschitz continuous function and X" solves the integral equation

X"(t) = x0 +

Z t

0
b(X"(s))ds+

p
"

Z
[0;t]

�(X"(s))dW (s) +

Z
X�[0;t]

"G(X"(s�); y)dN "�1 :

Then under Conditions 2.4 and 2.6, fY "g de�ned as in (2.11) satis�es a large deviation
principle in D([0; T ] : Rd) with speed b(") and the rate function given by

�I(�) = inf
 ;u

1

2

(
k k22 +

Z
[0;T ]

ju(s)j2ds
)
;

where the in�mum is taken over all ( ; u) 2 L2(�T )� L2([0; T ] : Rd) such that

�(t) =

Z t

0
[Db(X0(s))]�(s)ds+

Z t

0
�(X0(s))u(s)ds

+

Z
X�[0;t]

[DxG(X
0(s); y)]�(s)�(dy)ds+

Z
X�[0;t]

 (y; s)G(X0(s); y)�(dy)ds:

Also, the rate function can be simpli�ed as in Theorem 2.8.

2.4 In�nite Dimensional SDE

The equation considered here has been studied in [48] where general su¢ cient conditions for
strong existence and pathwise uniqueness of solutions are identi�ed. The solutions in general
will be distribution valued and a precise formulation of the solution space is given in terms
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of Countable Hilbertian Nuclear Spaces (cf. [48]). Recall that a separable Fréchet space � is
called a countable Hilbertian nuclear space (CHNS) if its topology is given by an increasing
sequence k � kn, n 2 N0, of compatible Hilbertian norms, and if for each n 2 N0 there exists
m > n such that the canonical injection from �m into �n is Hilbert-Schmidt. Here �k, for each
k 2 N0, is the completion of � with respect to k � kk.

Identify �00 with �0 using Riesz�s representation theorem and denote the space of bounded
linear functionals on �n by ��n. This space has a natural inner product [and norm] which we
denote by h�; �i�n [resp. k �k�n], n 2 N0, such that f��ngn2N0 is a sequence of increasing Hilbert
spaces and the topological dual of �, denoted as �0 equals [1n=0��n (see Theorem 1.3.1 of [48]).
Solutions of the SPDE considered in this section will have sample paths in D([0; T ] : ��n) for
some �nite value of n.

We will assume that there is a sequence f�jgj2N � � such that f�jg is a complete ortho-
normal system (CONS) in �0 and is a complete orthogonal system (COS) in each �n; n 2 Z.
Then f�nj g = f�jk�jk�1n g is a CONS in �n for each n 2 Z. It is easily seen that, for each r > 0,
� 2 ��r and � 2 �r, �[�] can be expressed as

�[�] =
1X
j=1

h�; �ji�rh�; �jir: (2.16)

We refer the reader to Example 1.3.2 of [48] for a canonical example of such a countable
Hilbertian nuclear space (CHNS) de�ned using a closed densely de�ned self-adjoint operator
on �0. A similar example is considered in Section 6. The SPDE we consider takes the form

X"(t) = x0 +

Z t

0
b(X"(s))ds+

Z
X�[0;t]

"G(X"(s�); y)N "�1(ds; dy) (2.17)

where the coe¢ cients b and G satisfy Condition 2.11 below (cf. Chapter 6, [43]). A precise
de�nition of a solution to (2.17) is as follows.

De�nition 2.10 Let (~
; ~F ; ~P ) be a probability space on which is given a Poisson random mea-
sure n" on XT with intensity measure "�1�T . Fix r 2 N0 and suppose that x0 2 ��r. A
stochastic process fX"

t gt2[0;T ] de�ned on ~
 is said to be a ��r-valued strong solution to the SDE
(2.17) with N "�1 replaced with n" and initial value x0, if the following hold.

(a) X"
t is a ��r-valued ~Ft-measurable random variable for all t 2 [0; T ], where ~Ft = �fn"(B�

[0; s]); s � t; B 2 B(X)g.

(b) X" 2 D([0; T ] : ��r) a.s.

(c) The map (s; !) 7! b(X"
s (!)) is measurable from [0; T ]�
 to ��r and the map (s; !; y) 7!

G(s;X"
s�(!); y) is ( ~P � B(X))=B(��r) measurable, where ~P is the predictable �-�eld cor-
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responding to the �ltration f ~Ftg. Furthermore,

~E

Z T

0

Z
X
kG(s;X"

s ; v)k2�r�(dv)ds <1

and
~E

Z T

0
kb(X"

s )k2�rds <1:

(d) For all t 2 [0; T ], almost all ! 2 ~
, and all � 2 �

X"
t [�] = x0[�] +

Z t

0
b(X"

s )[�]ds+ "

Z
X�[0;t]

G(s;X"
s�; y)[�]n"(dy; ds): (2.18)

We now present a condition from [48] that ensures unique solvability of (2.17). Let �p :
��p ! �p be the isometry such that for all j 2 N, �p(��pj ) = �pj . It is easy to check that for all
p 2 N, �p(�) � � (see Remark 6.1.1 of [48]).

Condition 2.11 For some p; q 2 N with q > p for which the embedding of ��p to ��q is Hilbert
-Schmidt, the following hold.

(a) (Continuity) b : �0 ! �0 is such that it is a continuous function from ��p to ��q. G
is a map from �0 � X to �0 such that for each u 2 ��p, G(u; �) 2 L2(X; �;��p) and the
mapping ��p 3 u 7! G(u; �) 2 L2(X; �;��p) is continuous.

(b) There exist Mb 2 (0;1) and MG 2 L1(�) \ L2(�) such that

kb(u)k�q �Mb(1 + kuk�p); kG(u; y)k�p �MG(y)(1 + kuk�p); u 2 ��p; y 2 X:

(c) For some Cb 2 (0;1) and all � 2 �

2b(�)[�p�] � Cb(1 + k�k2�p):

(d) For some Lb 2 (0;1)

u� u0; b(u)� b(u0)

�
�q � Lbku� u0k2�q; u; u0 2 ��p:

(e) For some LG 2 L1(�) \ L2(�)

kG(u; y)�G(u0; y)k�q � LG(y)ku� u0k�q; u; u0 2 ��p; y 2 X:

The following unique solvability result follows from [48]. For part (b) see Theorem 3.7 in
[10].
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Theorem 2.12 Fix x0 2 ��p, and assume Condition 2.11. The following conclusions hold.

(a) For each " > 0, there is a measurable map �G" : M ! D([0; T ] : ��q) such that for any
probability space (~
; ~F ; ~P ) and a Poisson random measure n" as in De�nition 2.10, ~X" =
�G"("n") is the unique ��q-valued strong solution of (2.17) with N "�1 replaced with n".
Furthermore, for every t 2 [0; T ], ~X"

t 2 ��p and ~E sup0�t�T k ~X"
t k2�p < 1, In particular

X" = �G"("N "�1) satis�es, for every � 2 �,

X"
t [�] = X0[�] +

Z t

0
b(X"

s )[�]ds+ "

Z
[0;t]�X

G(X"
s�; y)[�]N

"�1(dy; ds): (2.19)

(b) The integral equation

X0(t) = x0 +

Z t

0
b(X0(s))ds+

Z
E�[0;t)

G(X0(s); y)�(dy)ds: (2.20)

has a unique ��q-valued continuous solution. That is, there is a unique X0 2 C([0; T ];��q)
such that for all t 2 [0; T ] and all � 2 �

X0
t [�] = X0[�] +

Z t

0
b(X0

s )[�]ds+

Z
[0;t]�X

G(X0
s ; y)[�]�(dy)ds: (2.21)

Furthermore X0
t 2 ��p for all t 2 [0; T ] and

mT = sup
0�t�T

kX0
t k�p <1: (2.22)

As before, we are interested in a LDP for fY "g, where

Y " � 1

a(")
(X" �X0);

and a(") is as in (2.4). For that we will need some additional conditions on the coe¢ cients. Recall
the de�nition of Fréchet derivative of a real valued function on a Hilbert space (see Chapter II.5
of [26]), which characterizes the derivative as a bounded linear functional on the Hilbert space.
For the remainder of this section we considered a �xed p and q that satisfy Condition 2.11.

Condition 2.13 There exists a positive integer q1 > q such that the canonical mapping of ��q
to ��q1 is Hilbert-Schmidt, and the following hold.

(a) For every � 2 �, the Fréchet derivative of the map ��q 3 v 7! b(v)[�] from ��q to R exists
and is denoted by D(b(�)[�]). For each � 2 �, there exists LDb(�) 2 (0;1) such that

kD(b(u)[�])�D(b(u0)[�])kop � LDb(�)ku� u0k�q; u; u0 2 ��p;

Here k � kop is the operator norm in L(��q;R).
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(b) Recall that �q1k
:
= �kk�kk�1q1 . Then for every � 2 ��q

sup
fv2��p:kvk�p�mT g

1X
k=1

��D �b(v)[�q1k ]� [�]��2 �M2(�) <1:

This means that Av(�) : �! R de�ned by Av(�)[�] = D (b(v)[�]) [�] extends to a bounded
linear map from �q1 to R (i.e. an element of ��q1). For all v 2 ��p such that kvk�p � mT ,
� 7! Av(�) is a continuous map from ��q to ��q1 and there exist MA; LA; CA 2 (0;1)
such that

sup
fv2��p:kvk�p�mT g

kAv(�)k�q1 �MA(1 + k�k�q); for all � 2 ��q: (2.23)

sup
fv2��p:kvk�p�mT g

h� � �0; Av(�)�Av(�0)i�q1 � LAk� � �0k2�q1 ; for all �; �
0 2 ��q: (2.24)

sup
fv2��p:kvk�p�mT g

2Av(�+ �)[�q�] � CA(k�k�p + k�k�q)k�k�q; for all � 2 �; � 2 ��p;

(2.25)
where �q was de�ned just before Condition 2.11.

(c) For every � 2 �q1 ; y 2 X, the Fréchet derivative of G(�; y)[�] : ��q1 ! R, denoted as
Dx(G(�; y)[�]), exists. The map ��p 3 u ! Dx(G(u; y)[�]) 2 L(��q1 ;R) is Lipschitz
continuous: for each � 2 �q1 there exists LDG(�; �) 2 L1(�) such that

kDxG(u; y)[�]�DxG(u
0; y)[�]kop;�q1 � LDG(�; y)ku� u0k�q; u; u0 2 ��p; y 2 X:

There exists MDG : ��p � X! R+ such that

kDx(G(u; y)[�])kop;�q1 �MDG(u; y)k�kq1 ; u 2 ��p; � 2 �q1 ; y 2 X: (2.26)

kDx(G(u; y)[�])kop;�q �MDG(u; y)k�kq; u 2 ��p; � 2 �q; y 2 X;

and

M�
DG

:
= sup
fu2��p:kuk�p�mT g

Z
X
maxfMDG(u; y);M

2
DG(u; y)g�(dy) <1:

Here k � kop;�q1 (resp. k � kop;�q) is the operator norm in L(��q1 ;R) (resp. L(��q;R)).

(d) The functions MG and LG in Condition 2.11 are in H de�ned by (2.13).

Theorem 5.1 shows that under Conditions 2.11 and 2.13, for every  2 L2(�T ) there is a
unique � 2 C([0; T ];��q1) that solves

�(t) =

Z t

0
Db(X0(s))�(s)ds+

Z
X�[0;t]

DxG(X
0(s); y)�(s)�(dy)ds

+

Z
X�[0;t]

G(X0(s); y) (y; s)�(dy)ds; (2.27)
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in the sense that for every � 2 �

�(t)[�] =

Z t

0
D(b(X0(s))[�])�(s)ds+

Z
X�[0;t]

Dx(G(X
0(s); y)[�])�(s)�(dy)ds

+

Z
X�[0;t]

G(X0(s); y)[�] (y; s)�(dy)ds: (2.28)

The following is the main result of this section.

Theorem 2.14 Suppose Conditions 2.11 and 2.13 hold. Then fY "g">0 satis�es a large devia-
tion principle in D([0; T ];��q1) with speed b(") and rate function I given by

I(�) = inf
 

�
1

2
k k22

�
;

where the in�mum is taken over all  2 L2(�T ) such that (�;  ) satisfy (2.27).

In Section 6 we will provide an example taken from [48] where Conditions 2.11 and 2.13 hold.

3 Proof of Theorem 2.3

The following inequalities will be used several times. Recall the function `(r) = r log r � r + 1.

Lemma 3.1 (a) For a; b 2 (0;1) and � 2 [1;1), ab � e�a + 1
� `(b):

(b) For every � > 0, there exist �1(�); �01(�) 2 (0;1) such that �1(�); �01(�) ! 0 as � ! 1,
and

jx� 1j � �1(�)`(x) for jx� 1j � �; x � 0; and x � �01(�)`(x) for x � �:

(c) For each � > 0, there exists �2(�) 2 (0;1) such that

jx� 1j2 � �2(�)`(x) for jx� 1j � �; x � 0:

(d) There exists �3 2 (0;1) such that

`(x) � �3jx� 1j2; j`(x)� (x� 1)2=2j � �3jx� 1j3 for all x � 0:

Note that we can assume without loss that �2(�) is nonincreasing in �. The following result
is immediate from Lemma 3.1.
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Lemma 3.2 Suppose ' 2 SM+;" for some M <1, where SM+;" is de�ned in (2.5). Let  = '�1
a(") .

Then for all � > 0

(a)
Z
X�[0;T ]

j j1fj j��=a(")gd�T �Ma(")�1(�)

(b)
Z
X�[0;T ]

'1f'��gd�T �Ma2(")�01(�)

(c)
Z
X�[0;T ]

j j21fj j��=a(")gd�T �M�2(�);

where �1; �01 and �2 are as in Lemma 3.1.

The property that I de�ned in (2.7) is a rate function is immediate on observing that
Condition 2.2(a) says that �K = fG0(g) : g 2 B2(K)g is compact for all K <1, and therefore
for every M <1, f� 2 U : I(�) �Mg = \n�1�2M+1=n is compact as well.

To prove Theorem 2.3 it su¢ ces to show that the Laplace principle lower and upper bounds
hold for all F 2 Cb(U). Let G" be as in the statement of Theorem 2.3. Then it follows from
Theorem 2.1 with � = "�1 and F (�) there replaced by F � G"("�)=b(") that

�b(") log �E[e�F (Y ")=b(")] = inf
'2 �A+

�E
h
b(")"�1LT (') + F � G"("N "�1')

i
: (3.1)

We �rst prove the lower bound

lim inf
"!0

�b(") log �E[e�F (Y ")=b(")] � inf
�2U

[I(�) + F (�)] : (3.2)

For " 2 (0; 1), choose ~'" 2 �Ab such that

�b(") log �E[e�F (Y ")=b(")] � �E
h
b(")"�1LT (~'

") + F � G"("N "�1~'")
i
� ": (3.3)

Since kFk1 � supx2U jF (x)j <1, we have for all " 2 (0; 1) that

~M
:
= (2kFk1 + 1) � �E

�
b(")

"
LT (~'

")

�
: (3.4)

Fix � > 0 and de�ne

� " = infft 2 [0; T ] : b(")"�1Lt(~'") > 2 ~MkFk1=�g ^ T:

Let
'"(y; s) = ~'"(y; s)1fs��"g + 1fs>�"g; (y; s) 2 X� [0; T ]:
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Observe that '" 2 �Ab and b(")"�1LT ('") �M
:
= 2 ~MkFk1=�. Also,

�P f'" 6= ~'"g � �P
�
b(")"�1LT (~'

") > M
	

� �E[b(")"�1LT (~'")]=M

� �

2kFk1
(3.5)

where the last inequality holds by (3.4). For (y; s) 2 X� [0; T ] de�ne

~ 
"
(y; s) � ~'"(y; s)� 1

a(")
;  "(y; s) � '"(y; s)� 1

a(")
= ~ 

"
(y; s)1fs��"g:

Fix � 2 (0; 1] and let B" = �=a("). Applying Lemma 3.1(d), Lemma 3.2(c), using �2(1) � �2(�)
and (3.3), we have that

�b(") log �E[e�F (Y ")=b(")] � �E

"
b(")

"

Z
X�[0;T ]

`(~'")d�T + F � G"("N "�1~'")

#
� "

� �E

"
b(")

"

Z
X�[0;T ]

`('")1fj "j�B"gd�T + F � G
"("N "�1~'")

#
� "

� �E

"
1

2

Z
X�[0;T ]

�
( ")2 � �3a(")j "j3

�
1fj "j�B"gd�T + F � G

"("N "�1'")

#
+ �E

�
F � G"("N "�1~'")� F � G"("N "�1'")

�
� "

� �E

"
1

2

Z
X�[0;T ]

( ")21fj "j�B"gd�T + F � G
"("N "�1'")

#
� � � "� 1

2
��3M�2(1); (3.6)

where the last inequality follows from (3.5) on noting that����E�F � G"("N "�1~'")� F � G"("N "�1'")
���� � 2kFk1�P f'" 6= ~'"g � �:

By weak compactness of B2(r) and again using the monotonicity of �2(�), f "1fj "j��=a(")gg
is a tight family of B2((M�2(1))

1=2)-valued random variables. Let  be a limit point along
a subsequence which we index once more by ". By a standard argument by contradiction it
su¢ ces to prove (3.2) along this subsequence. From Condition 2.2(b), along this subsequence
G"("N "�1'") converges in distribution to � = G0( ). Hence taking limits in (3.6) along this
subsequence, we have

lim inf
"!0

�b(") log �E[e�F (Y ")=b(")] � �E

"
1

2

Z
X�[0;T ]

 2d�T + F (�)

#
� � � �

2
�3M�2(1)

� �E [I(�) + F (�)]� � � 1
2
��3M�2(1)

� inf
�2U

[I(�) + F (�)]� � � 1
2
��3M�2(1):
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where the �rst line is from Fatou�s lemma and the second uses the de�nition of I in (2.7).
Sending � and � to 0 we get (3.2).

To complete the proof we now show the upper bound

lim sup
"!0

�b(") log �E[e�F (Y ")=b(")] � inf
�2U

[I(�) + F (�)] : (3.7)

Fix � > 0. Then there exists � 2 U such that

I(�) + F (�) � inf
�2U
[I(�) + F (�)] + �=2: (3.8)

Choose  2 L2(�T ) such that

1

2

Z
X�[0;T ]

j j2d�T � I(�) + �=2; (3.9)

where � = G0( ). For � 2 (0; 1] de�ne

 " =  1fj j� �
a(")

g; '" = 1 + a(") ":

From Lemma 3.1(d), for every " > 0,Z
X�[0;T ]

`('")d�T � �3

Z
X�[0;T ]

('" � 1)2d�T

= a2(")�3

Z
X�[0;T ]

j "j2d�T

� a2(")M;

where M = �3
R
X�[0;T ] j j

2d�T . Thus '" 2 UM+;" for all " > 0. Also

 "1fj "j� �
a(")

g =  1fj j� �
a(")

g

which converges to  as "! 0. Thus from Condition 2.2(b)

G"("N "�1'")) G0( ): (3.10)

Finally, from (3.1), Lemma 3.1(d) and using b(")"�1 = 1=a(")2,

�b(") log �E
h
e�F (Y

")=b(")
i
� b(")"�1LT ('

") + F � G"("N "�1'")

� 1

2

Z
X�[0;T ]

j "j2 d�T + �3
Z
X�[0;T ]

a(")j "j3 d�T + F � G"("N "�1'")

� 1

2
(1 + 2�3�)

Z
X�[0;T ]

j j2 d�T + F � G"("N "�1'"):
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Taking limits as "! 0 and using (3.10) we have

lim sup
"!0

�b(") log �E
h
e�F (Y

")=b(")
i
� 1

2
(1 + 2�3�)

Z
j j2d�T + F (�):

Sending � ! 0 gives

lim sup
"!0

�b(") log �E
h
e�F (Y

")=b(")
i
� 1

2

Z
j j2d�T + F (�)

� I(�) + F (�) + �=2

� inf
�2U
[I(�) + F (�)] + �;

where the second inequality is from (3.9) and the last inequality follows from (3.8). Since � > 0
is arbitrary, this completes the proof of (3.7). �

4 Proofs for the Finite Dimensional Problem (Theorem 2.7)

From Theorem 2.5 we see that there exists a measurable map �G" :M! D([0; T ] : Rd) such that
X" � �G"("N "�1), and hence there is a map G" such that Y " � G"("N "�1). De�ne G0 : L2(�T )!
C([0; T ] : Rd) by

G0( ) = � if for  2 L2(�T ); � solves (2.14). (4.1)

In order to prove the theorem we will verify that Condition 2.2 holds with these choices of G"
and G0.

We begin by verifying part (a) of the condition.

Lemma 4.1 Suppose Conditions 2.4 and 2.6 hold. Fix M 2 (0;1) and g"; g 2 B2(M) such
that g" ! g. Let G0 be as de�ned in (4.1) Then G0(g")! G0(g).

Proof. Note that from Condition 2.4(c), (y; s) 7! G(X0(s); y) is in L2(�T ). Thus, since g" ! g,
we have for every t 2 [0; T ]Z

X�[0;t]
g"(y; s)G(X0(s); y)�(dy)ds!

Z
X�[0;t]

g(y; s)G(X0(s); y)�(dy)ds: (4.2)

We argue that the convergence is in fact uniform in t. For that note that for 0 � s � t � T�����
Z
X�[s;t]

g"(y; u)G(X0(u); y)�(dy)du

����� �
 
1 + sup

0�u�T
jX0(u)j

!Z
X�[s;t]

MG(y)jg"(y; u)j�(dy)du

�
 
1 + sup

0�u�T
jX0(u)j

!
jt� sj1=2MkMGk2;
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where abusing notation we have denoted the norm in L2(�) as k:k2 as well. This implies equicon-
tinuity, and hence the convergence in (4.2) is uniform in t 2 [0; T ]. The conclusion of the lemma
now follows by an application of Gronwall�s lemma.

In order to verify part (b) of Condition 2.2, we �rst prove some a priori estimates. Recall
the spaces H introduced in (2.13) and SM+;" in (2.5).

Lemma 4.2 Let h 2 L2(�) \ H and let M 2 (0;1). Then there exist & 2 (0;1) such that for
any measurable I � [0; T ] and for all " > 0,

sup
'2SM+;"

Z
X�I

h2(y)'(y; s)�(dy)ds � &(a2(") + jIj);

where jIj = �T (I).

Proof. Fix ' 2 SM+;" and let � = fy : jh(y)j � 1g. ThenZ
X�I

h2'd�T =

Z
��I

h2'd�T +

Z
�c�I

h2'd�T : (4.3)

The second term on the right side can be estimated asZ
�c�I

h2'd�T �
Z
X�I

'1f'�1gd�T +

Z
X�I

h2d�T

�Ma2(")�01(1) + jIkjhk22; (4.4)

where the second inequality follows from Lemma 3.2(b). Consider now the �rst term on the
right side of (4.3). Note that �(�) � khk22 < 1: Let � be as in the de�nition of H and let
M(�) =

R
� e

�h2(y)�(dy). Then, applying the inequality in Lemma 3.1(a) with � = 1, a = �h2

and b = '=�, we haveZ
��I

h2(y)'(y; s)�(dy)ds � jIj
Z
�
e�h

2(y)�(dy) +

Z
��I

`('(y; s)=�)�(dy)ds

�M(�)jIj+
Z
��I

`('(y; s)=�)�(dy)ds: (4.5)

Note that for x � 0

`
�x
�

�
=
x

�
log
�x
�

�
� x

�
+ 1

=
1

�
`(x) +

� � 1
�

� (x� 1)
�

log � � log �
�

� 1

�
`(x) + jx� 1j j log �j

�
+
� + j log �j

�
:
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ThusZ
��I

`('(y; s)=�)�(dy)ds � M

�
a2(") + c1(�)a(")

Z
��I

j (y; s)j�(dy)ds+ c2(�)�(�)jIj; (4.6)

where c1(�) =
j log �j
� , c2(�) =

�+j log �j
� and  = ('� 1)=a("). Finally

a(")

Z
��I

j jd�T = a(")

Z
��I

j j1fj j�1=a(")gd�T + a(")
Z
��I

j j1fj j<1=a(")gd�T

�Ma2(")�1(1) + a(")jIj1=2
p
�(�)

�Z
j j21fj j<1=a(")gd�T

�1=2
�Ma2(")�1(1) + a(")jIj1=2

p
�(�)(M�2(1))

1=2; (4.7)

where the �rst inequality follows from Lemma 3.2 (a) while the second uses part (c) of the same
lemma. The result now follows by combining (4.5) and (4.4) with the last two displays and using
a(")jIj1=2 � (a(")2 + jIj)=2.

Lemma 4.3 Let h 2 L2(�) \ H and I be a measurable subset of [0; T ]. Let M 2 (0;1). Then
there exist maps #; � : (0;1)! (0;1) such that #(u) # 0 as u " 1, and for all "; � 2 (0;1),

sup
 2SM"

Z
X�I

jh(y) (y; s)j1fj j��=a(")g�(dy)ds � #(�)(1 + jIj1=2);

and

sup
 2SM"

Z
X�I

jh(y) (y; s)j�(dy)ds � �(�)jIj1=2 + #(�)a("):

Proof. Let  2 SM" and � 2 (0;1). ThenZ
X�I

jh(y) (y; s)j�(dy)ds �
Z
X�I

jh(y) (y; s)j1fj j<�=a(")g�(dy)ds

+

Z
X�I

jh(y) (y; s)j1fj j��=a(")g�(dy)ds: (4.8)

By the Cauchy-Schwarz inequality and Lemma 3.2(c)Z
X�I

jh(y) (y; s)j1fj j<�=a(")g�(dy)ds �
�
jIj
Z
X
h2(y)�(dy)

Z
X�I

 21fj j<�=a(")g�(dy)ds

�1=2
� khk2(M�2(�))

1=2jIj1=2: (4.9)
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Let ' = 1+ a(") , and note that ' 2 SM+;". For the second term in (4.8), another application of
the Cauchy-Schwarz inequality and Lemma 3.2(a) giveZ
X�I

jh(y) (y; s)j1fj j��=a(")g�(dy)ds �
�Z

X�I
h2(y)j (y; s)j�(dy)ds

Z
X�I

j (y; s)j1fj j��=a(")g�(dy)ds
�1=2

�
�
Ma(")�1(�)

Z
X�I

h2(y)j (y; s)j�(dy)ds
�1=2

=

�
M�1(�)

Z
X�I

h2(y)j'(y; s)� 1j�(dy)ds
�1=2

�
�
M�1(�)

�
jIjkhk22 +

Z
X�I

h2'd�T

��1=2
(4.10)

� (M�1(�))
1=2
�
khk22jIj+ &(a2(") + jIj)

�1=2
; (4.11)

where the last inequality is obtained by an application of Lemma 4.2. Recall from Lemma 3.1

that �1(�)
�!1! 0. The �rst statement in the lemma is immediate from (4.11) while the second

follows by adding (4.9) and (4.11).

Recalling the de�nition of UM+;" in (2.6), we note that for every ' 2 UM+;" the integral equation

d �X";'(s) = b( �X";'(s))ds+

Z
XT
"G( �X";'(s�); y) N "�1'(ds; dy) (4.12)

has a unique pathwise solution. Indeed, let ~' = 1=', and recall that ' 2 UM+;" means that ' = 1
o¤ some compact set in y and bounded above and below away from zero on the compact set.
Then it is easy to check (see Theorem III.3.24 of [47], see also Lemma 2.3 of [12]) that

E"t (~') = exp
(Z

(0;t]�X�[0;"�1']
log(~')d �N +

Z
(0;t]�X�[0;"�1']

(�~'+ 1) d��T

)

is an
�
�Ft
	
-martingale and consequently

Q"T (G) =
Z
G
E"T (~')d�P; for G 2 B( �M)

de�nes a probability measure on �M. Furthermore �P and Q"T are mutually absolutely continuous.
Also it can be veri�ed that under Q"T , "N "�1' has the same law as that of "N "�1 under �P. Thus
it follows that �X";' = �G"("N "�1') is Q"T a.s. (and hence �P a.s.) the unique solution of (4.12),
where �G" is as in Theorem 2.5.

De�ne �Y ";' � G"("N "�1'), and note that this is equivalent to

�Y ";' =
1

a(")
( �X";' �X0): (4.13)
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The following moment bounds on �X";' and �Y ";' will be useful for our analysis. Lemma 4.4,
which is needed in the proof of Lemma 4.5, has a proof that is very similar to the proof of
Proposition 3.13 in [10]. Since a similar result for an in�nite dimensional model is proved in
detail in Section 5 (see Lemma 5.3 (a)), we omit the proof of Lemma 4.4.

Lemma 4.4 There exists an "0 2 (0;1) such that

sup
"2(0;"0)

sup
'2UM+;"

�E

"
sup
0�s�T

j �X";'(s)j2
#
<1:

Lemma 4.5 There exists an "0 2 (0;1) such that

sup
"2(0;"0)

sup
'2UM+;"

�E

"
sup
0�s�T

j �Y ";'(s)j2
#
<1:

Proof. Fix ' 2 UM+;" and let  = (' � 1)=a("). Let ~N "�1'(dy; ds) = N "�1'(dy; ds) �
"�1'(y; s)�(dy)ds. Then

�X";'(t)�X0(t) =

Z t

0

�
b( �X";'(s))� b(X0(s))

�
ds+

Z
X�[0;t]

"G( �X";'(s�); y) ~N "�1'(dy; ds)

+

Z
X�[0;t]

�
G( �X";'(s); y)�G(X0(s); y)

�
'(y; s)�(dy)ds

+

Z
X�[0;t]

G(X0(s); y)('(y; s)� 1)�(dy)ds:

Write
�Y ";' = A";' +M ";' +B";' + E";'1 + C";'; (4.14)

where

M ";'(t) =
"

a(")

Z
X�[0;t]

G( �X";'(s�); y) ~N "�1'(ds; dy);

A";'(t) =
1

a(")

Z t

0

�
b( �X";'(s))� b(X0(s))

�
ds;

B";'(t) =
1

a(")

Z
X�[0;t]

�
G( �X";'(s); y)�G(X0(s); y)

�
�(dy)ds;

E";'1 (t) =

Z
X�[0;t]

�
G( �X";'(s); y)�G(X0(s); y)

�
 (y; s)�(dy)ds;

C";'(t) =

Z
X�[0;t]

G(X0(s); y) (y; s)�(dy)ds: (4.15)
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Noting that M ";' is a martingale, Doob�s inequality gives

�E

"
sup
r�T

jM ";'(r)j2
#
�
�

"

a(")

�2
�E

"Z
X�[0;T ]

jG( �X";'(s); y)j2"�1'(y; s)�(dy)ds
#

� 2"

a2(")
�E

" 
1 + sup

t�T
j �X";'(t)j2

!Z
X�[0;T ]

MG(y)
2'(y; s)�(dy)ds

#
:

From Condition 2.6 MG 2 H, and so Lemmas 4.2 and 4.4 imply that for some 1 2 (0;1) and
" 2 (0; "0), where "0 is as in Lemma 4.5.

sup
'2UM+;"

�E

"
sup
r�T

jM ";'(r)j2
#
� 1

"

a2(")
: (4.16)

Next by the Lipschitz condition on G (Condition 2.4(b) and Condition 2.6(a)) and the Cauchy-
Schwarz inequality, there is 2 2 (0;1) such that for all t 2 [0; T ] and ' 2 UM+;"

sup
r�t

jE";'1 (r)j2 � a2(")

 Z
X�[0;t]

LG(y)j �Y ";'(s)k (y; s)j�(dy)ds
!2

� a2(") sup
s�t

j �Y ";'(s)j2
 Z

X�[0;t]
LG(y)j (y; s)j�(dy)ds

!2
� 2a

2(") sup
s�t

j �Y ";'(s)j2; (4.17)

where the last inequality follows from Lemma 4.3.

Again using the Lipschitz condition on G we have, for all t 2 [0; T ]

sup
r�t

jB";'(r)j2 � TkLGk21
Z t

0
j �Y ";'(s)j2 ds:

Similarly, the Lipschitz condition on b gives

sup
r�t

jA";'(r)j2 � TL2b

Z t

0
j �Y ";'(s)j2 ds:

From Lemma 4.3 again we have that, for some 3 2 (0;1) and all ' 2 UM+;"

sup
r�T

jC";'(r)j2 �
 Z

X�[0;T ]

��G(X0(s); y) (y; s)
�� �(dy)ds!2

�
 
1 + sup

s�T
jX0(s)j2

! Z
X�[0;T ]

MG(y)j (y; s)j�(dy)ds
!2

� 3;
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Collecting these estimates we have, for some 4 2 (0;1) and all ' 2 UM+;", t 2 [0; T ]

(1� 5a2(")2)�E
�
sup
s�t
( �Y ";'(s))2

�
� 4

�
1 +

Z t

0

�E
�
sup
s�r
( �Y ";'(r))2

�
dr

�
:

Choose "0 such that (1�5a2(")2) > 1=2, for all " � "0. The result now follows from Gronwall�s
inequality.

Lemma 4.6 Let h 2 L2(�) \ H. Then for every � > 0 there exists a compact set C � X such
that

sup
">0

sup
 2SM"

Z
Cc�[0;T ]

jh(y) (y; s)j�(dy)ds < �:

Proof. By Lemma 4.3, for all  2 SM"Z
X�[0;T ]

jh(y) (y; s)1fj j��=a(")gj�(dy)ds � #(�)(1 + T 1=2);

where #(�) # 0 as � " 1. Choose �0 <1 such that #(�0)(1 + T
1=2) < �=2. Next, from Lemma

3.2(c), for any compact set C in X

Z
Cc�[0;T ]

jh(y) (y; s)1fj j��0=a(")gj�(dy)ds �
 
T

Z
Cc
h2(y)�(dy)

Z
X�[0;T ]

 21fj j��0=a(")g

!1=2

�
�
MT�2(�0)

Z
Cc
h2(y)�(dy)

�1=2
:

Since h 2 L2(�), we can �nd a compact set C such that�
MT�2(�0)

Z
Cc
h2(y)�(dy)

�1=2
< �=2;

and the result follows.

Lemma 4.7 Let h 2 L2(�) \H and suppose h � 0. Then for any � <1,

sup
 2SM"

Z
X�[0;T ]

h(y)j (y; s)j1fj j>�=a(")g�(dy)ds! 0 as "! 0:

Proof. In view of Lemma 4.6, it su¢ ces to show that for any compact subset C of X,

sup
 2SM"

Z
C�[0;T ]

h(y)j (y; s)j1fj j>�=a(")g�(dy)ds! 0 as "! 0: (4.18)
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For K 2 (0;1), write
h = h1fh�Kg + h1fh>Kg:

From Lemma 3.2(a), for any  2 SM" ,Z
C�[0;T ]

h(y)1fh�Kgj (y; s)j1fj j>�=a(")g�(dy)ds � K

Z
C�[0;T ]

j (y; s)j1fj j>�=a(")g�(dy)ds

� KM�1(�)a("): (4.19)

The same calculation as in (4.10), but with X replaced by C and h with h1fh>Kg, givesZ
C�[0;T ]

h1fh>Kgj j1fj j>�=a(")gd�T �
�
M�1(�)

�
T

Z
C
h21fh>Kgd�

+

Z
C�[0;T ]

h21fh>Kg'd�T
��1=2

; (4.20)

where ' = 1 + a(") . Now using Lemma 3.1(a) with � = 1, a = �h2, b = '=�, where � is as in
(2.13), we haveZ

C�[0;T ]
h21fh>Kg'd�T � T

Z
C
e�h

2
1fh>Kg d� +

Z
C�[0;T ]

1fh>Kg`('=�)d�T : (4.21)

Next, noting that (4.6), (4.7) hold for all measurable sets � in X, we have on applying these
inequalities with � = C \ fh > Kg,Z
C�[0;T ]

1fh>Kg`('=�)d�T �
M

�
a2(") + c1(�)a(")

Z
C�[0;T ]

j j1fh>Kgd�T + c2(�)T�(C \ [h > K])

� M

�
a2(") +Mc1(�)a

2(")�1(1) + c1(�)a(")T
1=2
p
�(C)(M�2(1))

1=2

+ c2(�)T�(C \ [h > K]): (4.22)

Thus from (4.19), (4.20), (4.21) and (4.22) we have, for some M1 <1,

sup
 2SM"

Z
C�[0;T ]

hj j1f >�=a(")gd�T �M1

�
a2(") + (K + 1)a(") +

Z
C
e�h

2
1fh>Kgd�

�1=2
;

for all " > 0, K < 1. Since
R
C e

�h2(y)1fh>Kg�(dy) ! 0 as K ! 1, the statement in (4.18)
follows on sending �rst "! 0 and then K !1.

Lemma 4.8 Let f "g">0 be such that for some M < 1,  " 2 SM" for all " > 0. Let f :
X� [0; T ]! Rd be such that

jf(y; s)j � h(y); y 2 X; s 2 [0; T ]

for some h in L2(�) \ H. Suppose for some � 2 (0; 1] that  "1fj "j��=a(")g converges in
B2((M�2(1))

1=2) to  . ThenZ
X�[0;t]

f "d�T !
Z
X�[0;t]

f d�T ; for all t 2 [0; T ]:
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Proof. From Lemma 4.7 we have thatZ
X�[0;T ]

jf "j1fj "j>�=a(")gd�T ! 0 as "! 0:

Also, since f1[0;t] 2 L2(�T ) for all t 2 [0; T ] and  "1j "j��=a(") !  , we haveZ
X�[0;t]

f "1fj "j��=a(")gd�T !
Z
X�[0;t]

f d�T :

The result follows on combining the last two displays.

4.1 Proof of Theorem 2.7

The following is the key result needed for the proof of the theorem. It gives tightness of the joint
distribution of controls and controlled processes, and indicates how limits of these two quantities
are related.

Lemma 4.9 Let f'"g">0 be such that for some M < 1, '" 2 UM+;" for every " > 0. Let

 " = ('" � 1)=a(") and � 2 (0; 1]. Suppose that �Y ";'" = G"("N "�1'"), and recall that �Y ";'" =
( �X";'" � X0)=a("), where �X";'" = �G"("N "�1'"). Then f( �Y ";'" ;  "1fj "j��=a(")g)g is tight in
D([0; T ] : Rd)�B2((M�2(1))

1=2), and any limit point ( �Y ;  ) satis�es (2.14) with � replaced by
�Y , w.p.1.

Proof. We will use the notation from the proof of Lemma 4.5. Assume without loss of generality
that " � "0. From (2.4) and (4.16) we have that �E[supr�T jM ";'"(r)j2]! 0 as "! 0. Also, since

from Lemma 4.5 sup"�"0
�E
�
sups�T ( �Y

";'"(s))2
�
<1, (4.17) implies that �E[sups�T jE

";'"

1 (s)j2]!
0.

Noting that �X";'"(t) = X0(t) + a(") �Y ";'"(t) we have by Taylor�s theorem

G( �X";'"(s); y)�G(X0(s); y) = a(")DxG(X
0(s); y) �Y ";'"(t) +R";'

"
(s; y)

where
jR";'"(s; y)j � LDG(y)a

2(")j �Y ";'"(s)j2

Hence

B";'"(t) =

Z
X�[0;t]

DxG(X
0(s); y) �Y ";'"(s)�(dy)ds+ E";'

"

2 (t);

where with KDG =
R
X LDG(y)�(dy),

sup
r�T

jE";'
"

2 (r)j � KDG a(")

Z T

0
j �Y ";'"(s)j2ds:
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Thus using Lemma 4.5 again, �E[supr�T jE
";'"

2 (r)j]! 0. Similarly,

A";'
"
(t) =

Z t

0
Db(X0(s)) �Y ";'(s)ds+ E";'

"

3 (t)

where �E[supr�T jE
";'"

3 (r)j]! 0.

Putting these estimates together we have from (4.14)

�Y ";'"(t) = E";'"(t) +
Z t

0
Db(X0(s)) �Y ";'"(s)ds

+

Z
X�[0;t]

DxG(X
0(s); y) �Y ";'"(s)�(dy)ds+

Z
X�[0;t]

G(X0(s); y) "(y; s)�(dy)ds

(4.23)

where E";'" =M ";'" + E";'
"

1 + E";'
"

2 + E";'
"

3 ) 0.

We now prove tightness of

~B";'"(�) =
Z
X�[0;�]

DxG(X
0(s); y) �Y ";'"(s)�(dy)ds; C";'

"
(�) =

Z
X�[0;�]

G(X0(s); y) "(y; s)�(dy)ds

and
~A";'

"
(�) =

Z �

0
Db(X0(s)) �Y ";'"(s)ds:

Applying Lemma 4.3 with h =MG

jC";'"(t+ �)� C";'"(t)j =
Z
X�[t;t+�]

jG(X0(s); y)k "(y; s)j�(dy)ds

�
 
1 + sup

0�s�T
jX0

s j
!Z

X�[t;t+�]
MG(y)j "(y; s)j�(dy)ds

�
 
1 + sup

0�s�T
jX0

s j
!
(�(1)�1=2 + #(1)a(")): (4.24)

Tightness of fC";'"g">0 in C([0; T ] : Rd) is now immediate.

Next we argue the tightness of ~B";'" . Recall that mT = sups2[0;T ] jX0(s)j. Then, for 0 � t �
t+ � � T

j ~B";'"(t+ �)� ~B";'"(t)j2 =
 Z

X�[t;t+�]
DxG(X

0(s); y) �Y ";'"(s)�(dy)ds

!2

�
  

sup
jxj�mT

Z
X
jDxG(x; y)jop�(dy)

!Z
[t;t+�]

j �Y ";'"(s)jds
!2

� K2 sup
t�T

j �Y ";'"(t)j2�;
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where K2 = T supjxj�mT

R
X jDxG(x; y)jop�(dy), which is �nite from Condition 2.6 (b). Tightness

of f ~B";'"g">0 in C([0; T ] : Rd) now follows as a consequence of Lemma 4.5. Similarly it can be
seen that ~A";'

"
is tight in C([0; T ] : Rd) and consequently, �Y ";'" is tight in D([0; T ] : Rd). Also,

from Lemma 3.2(c),  "1fj "j��=a(")g takes values in B2((M�2(1))
1=2) for all " > 0 and by the

compactness of the latter space the tightness of  "1fj "j��=a(")g is immediate. This completes
the proof of the �rst part of the lemma. Suppose now that ( �Y ";'" ;  "1fj "j��=a(")g) along a
subsequence converges in distribution to ( �Y ;  ). From Lemma 4.8 and the tightness of C";'

"

established above  
�Y ";'" ;

Z
X�[0;�]

G(X0(s); y) "(y; s)�(dy)ds

!
converges in distribution, in D([0; T ] : R2d), to ( �Y ;

R
X�[0;�]G(X

0(s); y) (y; s)�(dy)ds). The

result now follows on using this in (4.23) and recalling that E";'" ) 0.

We now complete the proof of Theorem 2.7.

Proof of Theorem 2.7. It su¢ ces to show that Condition 2.2 holds with G" and G0 de�ned
as at the beginning of the section. Part (a) of the condition was veri�ed in Lemma 4.1. Consider
now part (b). FixM 2 (0;1) and � 2 (0; 1]. Let f'"g">0 be such that for every " > 0, '" 2 UM+;"
and  "1fj "j<�=a(")g )  in B2((M�2(1))

1=2), where  " = ('" � 1)=a("). To complete the proof
we need to show that

G"("N "�1'")) G0( ):

Recall that G"("N "�1'") = �Y ";'" . From Lemma 4.9 f( �Y ";'" ;  "1fj "j��=a(")g) is tight inD([0; T ] :
Rd)�B2((M�2(1))

1=2) and every limit point of �Y ";'" must equal G0( ). The result follows.

4.2 Proof of Theorem 2.8

Fix � 2 C([0; T ] : Rd) and � > 0. Let u 2 L2([0; T ] : Rd) be such that

1

2

Z T

0
ju(s)j2 ds � I(�) + �

and (�; u) satisfy (2.15). De�ne  : X� [0; T ]! R by

 (y; s)
:
=

dX
i=1

ui(s)ei(y; s); (y; s) 2 X� [0; T ]: (4.25)

From the orthonormality of ei(�; s) it follows that

1

2

Z
X�[0;T ]

j j2d�T =
1

2

Z T

0
ju(s)j2ds: (4.26)
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Also

[A(s)u(s)]i =
dX
j=1

hGi(X0(s); �); ej(�; s)iL2(�)uj(s)

=

*
Gi(X

0(s); �);
dX
j=1

ej(�; s)uj(s)
+
L2(�)

= hGi(X0(s); �);  (�; s)iL2(�);

so that A(s)u(s) =
R
 (y; s)G(X0(s); y)�(dy)ds. Consequently � satis�es (2.14) with  as in

(4.25). Combining this with (4.26) we have �I(�) � I(�) + �. Since � > 0 is arbitrary we have
�I(�) � I(�).

Conversely, suppose  2 L2(�T ) is such that

1

2

Z
X�[0;T ]

j j2d�T � �I(�) + �

and (2.14) holds. For i = 1; : : : ; d de�ne ui : [0; T ]! R by

ui(s) = h (�; s); ei(�; s)iL2(�):

Note that with u = (u1; : : : ; ud),

1

2

Z T

0
ju(s)j2ds = 1

2

Z T

0

dX
j=1

h (�; s); ej(�; s)i2L2(�)

� 1

2

Z T

0

Z
X
 2(y; s)�(dy)ds

� �I(�) + �: (4.27)

For s 2 [0; T ], let fej(�; s)g1j=d+1 be de�ned in such a manner that fej(�; s)g1j=1 is a complete
orthonormal system in L2(�). Then, for every s 2 [0; T ]

[A(s)u(s)]i =
dX
j=1

hGi(X0(s); �); ej(�; s)iL2(�)h (�; s); ej(�; s)iL2(�)

=

1X
j=1

hGi(X0(s); �); ej(�; s)iL2(�)h (�; s); ej(�; s)iL2(�)

= hGi(X0(s); �);  (�; s)iL2(�)

where the second equality follows on observing thatGi(X0(s); �) is in the linear span of fej(�; s)gdj=1
for every i = 1; : : : ; d. So A(s)u(s) =

R
 (y; s)G(X0(s); y)�(dy)ds and therefore (�; u) satisfy

(2.15). Combining this with (4.27) we get I(�) � �I(�) + �. Since � > 0 is arbitrary, I(�) � �I(�)
which completes the proof.
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5 Proofs for the In�nite Dimensional Problem (Theorem 2.14)

From Theorem 2.12 there is a measurable map G" : M ! D([0; T ] : ��q) such that Y " =

G"("N "�1). Also, in Theorem 5.1 below we will show that for every  2 L2(�T ) there is a unique
solution of (2.27). We denote this unique solution as G0( ). In order to prove the theorem it
su¢ ces to show that Condition 2.2 holds with G" and G0 de�ned as above.

Recall that Conditions 2.11 and 2.13 involve numbers p < q < q1. We start by proving the
unique solvability of (2.27).

Theorem 5.1 Suppose Conditions 2.11 and 2.13 hold. Then for every  2 L2(�T ), there
exists a unique � 2 C([0; T ];��q1) that solves (2.27). Furthermore, for every M 2 (0;1),
sup 2B2(M) sup0�t�T k� (t)k�q <1.

Proof. Fix M 2 (0;1), and for  2 B2(M), let ~� (�) =
R
X�[0;�]G(X

0(s); y) (y; s)�(dy)ds. By
an application of the Cauchy-Schwarz inequality, Condition 2.11(b) and the de�nition of mT in
(2.22), we see that for every such  and 0 � s � t � T

~� (t)� ~� (s)�p =

Z
X�[s;t]

G(X0(r); y) (y; r)�(dy)dr


�p

(5.1)

� (t� s)1=2M(1 +mT )

�Z
X
M2
G(y)�(dy)

�1=2
= (t� s)1=2m1

T ;

where

m1
T
:
=M(1 +mT )

�Z
X
M2
G(y)�(dy)

�1=2
: (5.2)

This shows that ~� is in C([0; T ] : ��p). Henceforth we suppress  from the notation unless
needed. With Av as in Condition 2.13, de�ne ~b : [0; T ]� ��q ! ��q1 by

~b(s; v)
:
= AX0(s)(v + ~�(s)) +

Z
X
Dx

�
G(X0(s); y)[�]

�
[v + ~�(s)]�(dy); (s; v) 2 [0; T ]� ��q: (5.3)

The right side in (5.3) indeed de�nes an element in ��q1 as is seen from the de�nition of Av and
the estimate in (2.26). Note that � solves (2.27) if and only if �� = � � ~� solves the equation

��(t) =

Z t

0

~b(s; ��(s))ds: (5.4)

We now argue that (5.4) has a unique solution, namely there is a unique �� 2 C([0; T ] : ��q1)
such that for all � 2 �

��(t)[�] =

Z t

0

~b(s; ��(s))[�]ds; t 2 [0; T ]:
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For this, in view of Theorem 3.7 in [10], it su¢ ces to check that for some K <1, ~b satis�es the
following properties.

(a) For all t 2 [0; T ] and u 2 ��q, ~b(t; u) 2 ��q1 , and the map u 7! ~b(t; u) is continuous.

(b) For all t 2 [0; T ], and � 2 �, 2~b(t; �)[�q�] � K(1 + k�k2�q):

(c) For all t 2 [0; T ], and u 2 ��q, k~b(t; u)k2�q1 � K(1 + kuk2�q):

(d) For all t 2 [0; T ], and u1; u2 2 ��q,

2h~b(t; u1)� ~b(t; u2); u1 � u2i�q1 � Kku1 � u2k2�q1 : (5.5)

Consider �rst part (a). For s 2 [0; T ] and � 2 ��q, de�ne ~AX0(s)(�) : �q ! R by

~AX0(s)(�)[�] =

Z
X
Dx

�
G(X0(s); y)[�]

�
[�]�(dy):

Note that ~b(s; v) = AX0(s)(v + ~�(s)) + ~AX0(s)(v + ~�(s)). Let K1 = maxf
p
Tm1

T ; 1g, with m1
T

de�ned in (5.2). Then using Condition 2.13(c) and (5.1) we have, for each �xed s 2 [0; T ], that

j ~AX0(s)(v + ~�(s))[�]j � K1M
�
DG(1 + kvk�q1)k�kq1 ; � 2 �q1 ; v 2 ��q: (5.6)

Consequently, for each �xed s, v 7! ~AX0(s)(v + ~�(s)) is a map from ��q to ��q1 . Also, from
Condition 2.13(b) for each �xed s, v 7! AX0(s)(v + ~�(s)) is a map from ��q to ��q1 . By the
same condition the map v 7! AX0(s)(v + ~�(s)) is continuous for each s. Also, from Condition
2.13(c) we have for each �xed s 2 [0; T ] and v; v0 2 ��q

j ~AX0(s)(v + ~�(s))[�]� ~AX0(s)(v
0 + ~�(s))[�]j �M�

DGkv � v0k�q1k�kq1 ; � 2 �q1 : (5.7)

Consequently the map v 7! ~AX0(s)(v + ~�(s)) is continuous as well. This proves (a).

For (b) note that again using Condition 2.13(c) and (5.1), for � 2 �,

~AX0(s)(�+ ~�(s))[�q�] �
Z
X
MDG(X

0(s); y)k�q�kqk�+ ~�(s)k�q�(dy)

�M�
DG(m

1
T

p
T + k�k�q)k�k�q: (5.8)

Also, from (2.25)

2AX0(s)(�+ ~�(s))[�q�] � CA(k�k�q +
p
Tm1

T )k�k�q:

Combining this estimate with (5.8) we have (b).

Consider now part (c). Note that, from (5.6) we have

k ~AX0(s)(v + ~�(s))k�q1 � K1M
�
DG(1 + kvk�q1); v 2 ��q:
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Also, from (2.23) and (5.1)

kAX0(s)(v + ~�(s))k�q1 �MA(1 +
p
TmT

1 + kvk�q); v 2 ��q:

Combining the last two estimates we have

k~b(t; v)k�q1 � (K1M
�
DG +MA)(1 +

p
TmT

1 + kvk�q); v 2 ��q (5.9)

which veri�es part (c).

Finally, for (d) note that from (2.24), for all u1; u2 2 ��q and s 2 [0; T ]

hu1 � u2; AX0(s)(u1 + ~�(s))�AX0(s)(u2 + ~�(s))i�q1 � LAku1 � u2k2�q1 : (5.10)

Also, from (5.7), for all u1; u2 2 ��q and s 2 [0; T ]

hu1 � u2; ~AX0(s)(u1 + ~�(s))� ~AX0(s)(u2 + ~�(s))i�q1 �M�
DGku1 � u2k2�q1 : (5.11)

Part (d) now follows on combining these two displays.

As noted earlier, we now have from Theorem 3.7 in [10] that (5.4) and therefore (2.28) has
a unique solution in C([0; T ];��q1). Also, from the same theorem it follows that

sup
 2B2(M)

sup
0�t�T

k��(t)k�q <1:

The second part of the theorem is now immediate on noting that

sup
 2B2(M)

sup
0�t�T

k� (t)k�q �
p
TmT

1 + sup
 2B2(M)

sup
0�t�T

k��(t)k�q:

The following lemma veri�es part (a) of Condition 2.2.

Lemma 5.2 Suppose that Conditions 2.11 and 2.13 hold. Fix M 2 (0;1) and g"; g 2 B2(M)
such that g" ! g. Let G0 be the mapping that was shown to be well de�ned in Theorem 5.1.
Then G0(g")! G0(g).

Proof. From (5.1) and the compact embedding of ��p into ��q we see that the collection(
~�"(�) =

Z
X�[0;�]

G(X0(r); y)g"(y; r)�(dy)dr

)
">0

is precompact in C([0; T ] : ��q). Combining this with the convergence g" ! g and the fact that
(s; y) 7! G(X0(s); y)[�] is in L2(�T ) for every � 2 �, we see that

~�" ! ~� as "! 0 in C([0; T ] : ��q) (5.12)
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where ~� =
R
X�[0;�]G(X

0(r); y)g(y; r)�(dy)dr. Next, let �" denote the unique solution of (2.27)
with  replaced by g" and, as in the proof of Theorem 5.1, de�ne ��" = �" � ~�". From Theorem
5.1

M�� = sup
">0

sup
0�t�T

k��"(t)k�q <1: (5.13)

Also, for every �xed � 2 �, ��" solves

��"(t)[�] =

Z t

0

~b"(s; ��"(s))[�]ds; (5.14)

where ~b" is de�ned by the right side of (5.3) by replacing ~� with ~�".

Next, let �� 2 C([0; T ] : ��q1) be the unique solution of

��(t)[�] =

Z t

0

~b(s; ��(s))[�]ds; � 2 �;

where ~b is as in (5.3). Let Âv = Av+ ~Av and a"(s) = ÂX0(s)(��"(s)+~�"(s))� ÂX0(s)(��(s)+~�(s)).
Using the same bounds as those used in (5.9), (5.10) and (5.11), there is K <1 such that

k��"(t)� ��(t)k2�q1 = 2
Z t

0
h~b"(s; ��"(s))� ~b(s; ��(s)); ��"(s)� ��(s)i�q1ds

= 2

Z t

0
ha"(s); ��"(s)� ��(s)i�q1ds

= 2

Z t

0
ha"(s); (��"(s) + ~�"(s))� (��(s) + ~�(s))i�q1ds+ 2

Z t

0
ha"(s); ~�(s)� ~�"(s)i�q1ds

� K

Z t

0
k(��"(s) + ~�"(s)� (��(s) + ~�(s))k2�q1ds+K2

Z t

0
k~�(s)� ~�"(s)k�q1ds;

where K2 = 2(K1M
�
DG +MA)(1 +

p
Tm1

T +M��) and M�� is from (5.13). Thus

k��"(t)���(t)k2�q1 � 2K
Z t

0
k��"(s)���(s)k2�q1ds+K3

Z t

0
(k~�"(s)�~�(s)k2�q1+k~�"(s)�~�(s)k�q1)ds;

where K3 = K2 + 2K. The result now follows on combining this with (5.12) and q < q1, and
using Gronwall�s lemma.

We now consider part (b) of Condition 2.2. For ' 2 UM+;" let �X";' = �G"("N "�1'). As in
Section 4 it follows by an application of Girsanov�s theorem that �X";' is the unique solution of
the integral equation

�X";'
t [�] = x0[�] +

Z t

0
b( �X";'

s )[�]ds+ "

Z
X�[0;t]

G( �X";'
s� ; y)[�]N

"�1'(dy; ds); � 2 � (5.15)

De�ne �Y ";' as in (4.13). Then �Y ";' = G"("N "�1').
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The following moment bounds on �X";' and �Y ";' will be key. The proof of part (a) is
given in Proposition 3.13 of [10]. However, equation (3.33) in [10] contains an error, in view of
which we give a corrected proof below. The idea is to �rst approximate �X";' by a sequence of
�nite-dimensional processes f �X";d;'gd2N and obtain an analogous equation for the d-dimensional
process for every value of d. The desired estimate follows by �rst obtaining an estimate for the
�nite dimensional processes that is uniform in d and then sending d!1.

Lemma 5.3 Suppose Condition 2.11 and 2.13(d) hold. Fix M < 1. Then there exists an
"0 > 0 such that

(a)

sup
"2(0;"0)

sup
'2UM+;"

�E

"
sup
0�s�T

k �X";'(s)k2�p

#
<1:

(b)

sup
"2(0;"0)

sup
'2UM+;"

�E

"
sup
0�s�T

k �Y ";'(s)k2�q

#
<1:

Proof. We �rst prove part (5.3). We follow the steps in the proof of Theorem 6.2.2 of [48]
(see also the proof of Theorem 3.7 in [10]). Recall that f�jgj2N is a CONS in �0 and a COS in
�n; n 2 N. For d 2 N let �d : ��p ! Rd be de�ned by

�d(u)
:
= (u[�p1]; : : : ; u[�

p
d])

0; u 2 ��p:

Let xd0 = �d(x0). De�ne �d : Rd ! Rd and gd : Rd � X! Rd by

�d(x)k = b

�Xd

j=1
xj�

�p
j

�
[�pk]; g

d(x; y)k = G

�Xd

j=1
xj�

�p
j ; y

�
[�pk]; k = 1; : : : ; d;

where �[�] was de�ned in (2.16). Next de�ne d : �0 ! �0 by

du
:
=

dX
k=1

u[�pk]�
�p
k ;

and de�ne bd : �0 ! �0 and Gd : �0 � X! �0 by

bd(u) = db(du); Gd(u; y) = dG(du; y):

It is easy to check that for each d 2 N, bd andGd satisfy Condition 2.11 [with (Mbd ;MGd ; Cbd ; Lbd ; LGd)
equal to (Mb;MG; Cb; Lb; LG) for all d]; see the proof of Theorem 6.2.2 in [48]. Also, from Lemma
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6.2.2 in [48] and an argument based on Girsanov�s theorem (as in Section 4) it follows that the
following integral equation has a unique solution in D([0; T ] : Rd) for all ' 2 UM+;":

�x";d;'(s) = xd0 +

Z t

0
�d(�x";d;'(s))ds+

Z
X�[0;t]

"gd(�x";d;'(s�); y)N "�1'(dy; ds):

Let

�X";d;'(t) =
dX

k=1

�x";d;'k (t)��pk ; t 2 [0; T ]:

Then, with Xd
0 =

Pd
k=1(x

d
0)k�

�p
k , for all t 2 [0; T ]

�X";d;'(t) = Xd
0 +

Z t

0
bd( �X";d;'(s))ds+

Z
X�[0;t]

"Gd( �X";d;'(s�); y)N "�1'(dy; ds):

We next prove that there exists "0 > 0 such that

sup
d2N

sup
"2(0;"0)

�E

"
sup
0�t�T

k �X";d;'(s)k2�p

#
<1:

The proof is similar to Lemma 6.2.2 in [48] (see also the proof of [10, Proposition 3.13]), and
therefore we just outline the main steps. By Itô�s lemma

k �X";d;'(t)k2�p

= kX0(t)k2�p + 2
Z t

0
bd( �X";d;'(s))[�p �X

";d;'(s)]ds

+ 2

Z
X�[0;t]

D
�X";d;'(s); Gd( �X";d;'(s); y)

E
�p
'd�T +

Z
X�[0;t]

"kGd( �X";d;'(s); y)k2�p'd�T

+

Z
X�[0;t]

2

�D
�X";d;'(s�); "Gd( �X";d;'(s�); y)

E
�p
+ k"Gd( �X";d;'(s�); y)k2�p

�
d ~N "�1': (5.16)

Recalling that Condition 2.11(c) holds with b = bd (with the same constant Cb for all d), we
have

2

Z t

0

D
�X";d;'(s); bd( �X";d;'(s))

E
�p
ds � Cb

Z t

0
(1 + k �X";d;'(s)k2�p)ds:

Now exactly as in [10, Proposition 3.13] it follows that there exists L1 2 (0;1) such that for all
d 2 N, " 2 (0; 1) and ' 2 UM+;"

sup
0�s�T

k �X";d;'(s)k2�p � L1

 
1 + sup

0�s�T
jMd(s)j

!
; (5.17)

where Md(t) is the last term on the right side of (5.16) (see (3.35) in [10]). Once more, exactly
as in [10] (see (3.36) and (3.37) therein) one has that there is a L2 2 (0;1) such that for all
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d 2 N, " 2 (0; 1) and ' 2 UM+;"

�E sup
0�s�T

jMd(s)j � "L2

 
1 + �E sup

0�t�T
k �X";d;'(t)k2�p

!
+
1

8
�E sup
0�t�T

k �X";d;'(t))k2�p:

Using the last estimate in (5.17) we now have that, for some "0 > 0,

sup
d2N

sup
"2(0;"0)

sup
'2UM+;"

�E sup
0�t�T

k �X";d;'(t)k2�p <1: (5.18)

Also an application of Girsanov�s theorem and Theorem 6.1.2 of [48] shows that �X";d;' converges
in distribution, in D([0; T ] : ��q) to the solution of (5.15). The estimate in part (5.3) of the
lemma now follows from (5.18) and an application of Fatou�s lemma.

We now prove part (5.3) of the lemma. By Itô�s formula,

k �X";'(t)�X0(t)k2�q = 2
Z t

0
h �X";'(s)�X0(s); b( �X";'(s))� b(X0(s))i�qds

+ 2

Z
X�[0;t]

h �X";'(s)�X0(s); G( �X";'(s); y)�G(X0(s); y))i�q�(dy)ds

+ 2

Z
X�[0;t]

h �X";'(s)�X0(s); G( �X";'(s); y)i�q('� 1)�(dy)ds

+

Z
X�[0;t]

"kG( �X";'(s); y)k2�q'�(dy)ds

+

Z
X�[0;t]

�
2h �X";'(s�)�X0(s�); "G( �X";'(s�); y)i�q

+ k"G( �X";'(s�); y)k2�q
�
~N "�1'(dy; ds)

= a2(") (A";' +B";' + C";' + E";'1 +M ";'
1 +M ";'

2 ) :

By Condition 2.11(d), for all t 2 [0; T ]

sup
0�r�t

A";'(r) � 2Lb
Z t

0
k �Y ";'(s)k2�qds:

Also by Condition 2.11(e)

sup
0�r�t

jB";'(r)j � kLGk1
Z t

0
k �Y ";'(s)k2�qds:
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Next, note that with  = ('� 1)=a(")

sup
0�r�t

jC";'(r)j � 2
Z
X�[0;t]

jh �Y ";'(s); G( �X";'(s); y)i�qj j jd�T

� 2
Z
X�[0;t]

k �Y ";'(s)k�qkG( �X";'(s); y)k�qj jd�T

� 2
Z
X�[0;t]

k �Y ";'(s)k�q
�
kG( �X0(s); y)k�q + LG(y)a(")k �Y ";'(s)k�q

�
j jd�T

� 2
Z
X�[0;t]

k �Y ";'(s)k�qRG(y)j j
�
1 + a(")k �Y ";'(s)k�q

�
d�T ;

where for y 2 X, RG(y) =MG(y)(1 +mT ) + LG(y). Thus

sup
r�t

jC";'(r)j � 2a(") sup
r�t

k �Y ";'(r)k2�q
Z
X�[0;t]

RG(y)j jd�T + 2
Z
X�[0;t]

k �Y ";'(s)k�qRG(y)j jd�T

= T1 + T2: (5.19)

Consider now T2. Note that RG 2 L2(�)\H. We can therefore apply Lemma 4.3 with h replaced
by RG. For any � <1

T2 = 2

Z
X�[0;t]

k �Y ";'(s)k�qRG(y)j j
�
1fj j��=a(")g + 1fj j>�=a(")g

�
d�T

� 2 sup
r�t

k �Y ";'(r)k�q#(�)(1 +
p
T ) +

Z
X�[0;t]

�
k �Y ";'(r)k2�qR2G(y) + j j21fj j��=a(")g

�
d�T

� 2 sup
r�t

k �Y ";'(r)k�q#(�)(1 +
p
T ) + L1

Z
[0;t]

k �Y ";'(s)k2�qds+M�2(�); (5.20)

where L1 =
R
XR

2
G(y)�(dy) and in the last inequality we have used Lemma 3.2(c). Once again

from Lemma 4.3

L2 = sup
"2(0;1)

sup
 2SM"

2

Z
X�[0;T ]

RG(y)j jd�T <1:

Using a � 1 + a2 and the last two estimates in (5.19), we have that

sup
r�t

jC";'(r)j � L(�) + sup
r�t

k �Y ";'(r)k2�q(L2a(") + ~#(�)) + L1
Z
[0;t]

k �Y ";'(s)k2�qds; (5.21)

where ~#(�) = 2#(�)(1 +
p
T ) and L(�) =M�2(�) + ~#(�).

Next note that

sup
r�t

E";'1 (r) � "

a2(")

Z
X�[0;t]

(1 + k �X";'(s)k�p)2M2
G(y)'(y; s)d�T

� "

a2(")

 
1 + sup

s�T
k �X";'(s)k�p

!2 Z
X�[0;t]

M2
G(y)'(y; s)d�T :
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Since MG 2 L2(�) \H, we have from Lemma 4.2 that

L3 = sup
"2(0;1)

sup
'2SM+;"

Z
X�[0;t]

M2
G 'd�T <1;

and consequently for all " 2 (0; "0)

�E
�
sup
r�t

E";'1 (r)

�
� L4

"

a2(")
;

where L4 = 2L3 sup'2UM+;"(1 +
�E sup0�s�T k �X";'(s)k2�p) <1 by part (a) of the lemma if "0 > 0

is small enough. Next, an application of Lenglart-Lepingle-Pratelli inequality (see Lemma 2.4
in [49]) gives that for some L5 2 (0;1)

�E

"
sup
0�s�T

M ";'
1 (s)

#
� L5
a2(")

�E

"Z
X�[0;T ]



�X";'(s)�X0(s); "G( �X";'(s); y)

�2
�q "

�1'�(dy)ds

#1=2

� L5
p
"

a2(")
�E

"Z
X�[0;t]

k �X";'(s)�X0(s)k2�qkG( �X";'(s�); y)k2�q'�(dy)ds
#1=2

� L5
p
"

a(")
�E

24sup
s�t

k �Y ";'(s)k�q

 Z
X�[0;t]

kG( �X";'(s); y)k2�q'�(dy)ds
!1=235

� L5
p
"

2a(")

"
�E sup
s�t

k �Y ";'(s)k2�q + �E
�
1 + sup

s�t
k �X";'(s)k2�p

�Z
X�[0;t]

MG(y)
2'�(dy)ds

#

� L5
p
"

2a(")
�E sup
s�t

k �Y ";'(s)k2�q +
L5L4

p
"

4a(")
:

Finally,

�E
�
sup
0�s�t

M ";'
2 (s)

�
� 1

a2(")
�E
Z
X�[0;T ]

k"G( �X";'(s�); y)k2�qN "�1'(dy; ds)

+
1

a2(")
�E
Z
X�[0;T ]

"kG( �X";'(s); y)k2�q'd�T

� 2"

a2(")
�E
Z
X�[0;T ]

kG( �X";'(s); y)k2�q'd�T

� "L4
a2(")

:

Let "1 2 (0; "0) be such that for all " 2 (0; "1), maxf"; a("); "
a2(")

g < 1. Collecting terms together,
we now have for all " 2 (0; "1)

�E
�
sup
s�t

k �Y ";'(s)k2�q
�
� K1

Z t

0

�E
�
sup
r�s

k �Y ";'(r)k2�q
�
ds+

�
L(�) + 2L4 +

L5L4
4

�
+

�
L2a(") + L5

p
"

2a(")
+ ~#(�)

�
�E
�
sup
s�t

k �Y ";'(s)k2�q
�
;
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where K1 = 2Lb + kLGk1 +L1. Since ~#(�)! 0 as � !1, we can �nd �0 <1 and "2 2 (0; "1)
such that for all " 2 (0; "2), L2a(") + L5 "

2a(") +
~#(�0) � 1=2. Using this in the above inequality,

for all " 2 (0; "2)

�E
�
sup
s�t

k �Y ";'(s)k2�q
�
� K2 +

K1

2

Z t

0

�E
�
sup
r�s

k �Y ";'(r)k2�q
�
ds;

where K2 =
1
2(L(�0) + 2L4 +

L5L4
4 ). The result now follows from Gronwall�s inequality.

The following result will be used in verifying part (b) of Condition 2.2. Recall the integer
q1 > q introduced in Condition 2.13.

Lemma 5.4 Suppose Conditions 2.11 and 2.13 hold. Let "0 > 0 be as in Lemma 5.3, and
let f'"g"2(0;"0) be such that for some M < 1, '" 2 UM+;" for every " 2 (0; "0). Let  " =
('" � 1)=a(") and �x � 2 (0; 1]. Then f

�
�Y ";'" ;  "1fj "j��=a(")g

�
g"2(0;"0) is tight in D([0; T ] :

��q1)�B2((M�2(1))
1=2)) and any limit point (�;  ) solves (2.27).

Proof. In order to prove the tightness of f �Y ";'"g"2(0;"0) we will apply Theorem 2.5.2 of [48],
according to which it su¢ ces to verify that:
(a) fsup0�t�T k �Y ";'"(t)k�qg"2(0;"0) is a tight family of R+-valued random variables,
(b) for every � 2 �, f �Y ";'" [�]g"2(0;"0) is tight in D([0; T ] : R).

Note that (a) is immediate from Lemma 5.3(b). Consider now (b).

As in the proof for the �nite-dimensional case (see the proof of Lemma 4.5), we write �Y ";'" =
M ";'" + A";'

"
+ B";'" + E";'

"

1 + C";'
"
, where the processes on the right side are as de�ned in

(4.15). Fix � 2 �. Using Condition 2.11 parts (b) and (e), it follows as in the proof of Lemma
4.5 (see (4.16) and (4.17)) that

�E

"
sup
0�s�T

jM ";'"(s)[�]j2
#
! 0; �E

"
sup
0�s�T

jE";'
"

1 (s)[�]j2
#
! 0; as "! 0: (5.22)

Next, by Taylor�s theorem and Condition 2.13(c) ,

G( �X";'"(s); y)[�]�G(X0(s); y)[�] = a(")Dx(G(X
0(s); y)[�]) �Y ";'"(s) +R";'

";�(y; s)

where
jR";'";�(y; t)j � LDG(�; y)a

2(")k �Y ";'"(t)k2�q (5.23)

Hence

B";'"(t)[�] =

Z
X�[0;t]

Dx

�
G(X0(s); y)[�]

�
�Y ";'(s)�(dy)ds+ E";'

";�
2 (t); (5.24)
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where, from (5.23), Lemma 5.3(b) and Condition 2.13(c),

�E

"
sup
0�t�T

jE";'
";�

2 (t)j
#
� Ta(")kLDG(�; �)k1�E sup

0�t�T
k �Y ";'";�(t)k2�q ! 0 as "! 0: (5.25)

Similarly, using Condition 2.13(a)

A";'
"
(t)[�] =

Z t

0
D
�
b(X0(s))[�]

�
�Y ";'"(s)ds+ E";'

";�
3 (t)

where

�E

"
sup
0�t�T

jE";'
"

3 (t)j
#
! 0 as "! 0: (5.26)

Combining (5.22)�(5.26), we have

�Y ";'"(t)[�] = E";'";�(t) +
Z t

0
D(b(X0(s))[�]) �Y ";'"(t)ds

+

Z
X�[0;t]

Dx(G(X
0(s); y)[�]) �Y ";'"(s) d�T +

Z
X�[0;t]

G(X0(s); y)[�] " d�T

� E";'";�(t) +A";'
";�

1 (t) +B";'";�
1 (t) + C";'

";�
1 (t) (5.27)

where �E[sup0�t�T jE";'
";�(t)j]! 0.

Next, from Condition 2.11(b) we have applying Lemma 4.3 with h =MG as in the proof of
(4.24), that for all � > 0, t 2 [0; T � �], " > 0,

jC";'
"

1 (t+ �)[�]� C";'
"

1 (t)[�]j � (1 +mT )k�kp(�(1)�1=2 + #(1)a("));

where � and # are as in Lemma 4.3 andmT is as in (2.22). Tightness of C
";'"

1 (�)[�] in C([0; T ] : R)
is now immediate.

For tightness of B";'"

1 (t)[�] note that from Condition 2.13(c), for all � > 0, t 2 [0; T � �],
" > 0

jB";'"

1 (t+ �)[�]�B";'"

1 (t)[�]j �
Z
X�[t;t+�]

kDx(G(X
0(s); y)[�])kop;�q1k �Y ";'"(s)k�qd�T

� k�kq1M�
DG� sup

0�t�T
k �Y ";'"(t)k�q:

Tightness of B";'"

1 (t)[�] in C([0; T ] : R) now follows from Lemma 5.3(b). A similar estimate
using (2.23) shows that A";'

"

1 (t)[�] is tight in C([0; T ] : R) as well. Combining these tightness
properties we have from (5.27) that f �Y ";'"(�)[�]g">0 is tight in D([0; T ] : R) for all � 2 �
which proves part (b) of the tightness criterion stated at the beginning of the proof. Thus
f �Y ";'"(�)g"2(0;"0) is tight in D([0; T ] : ��q1). Tightness of f 

"1fj "j��=a(")gg"2(0;"0) holds for the
same reason as in the proof of Lemma 4.9, i.e., because they take values in a compact set.
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Suppose now that ( �Y ";'"(�);  "1fj "j<�=a(")g) converges along a subsequence in distribution
to (�;  ). To prove the result it su¢ ces to show that for all � 2 � (2.28) is satis�ed. From
Lemma 4.8, Condition 2.11(b) and the tightness of C";'

"

1 (t)[�] shown above it follows that 
�Y ";'" ;

Z
X�[0;�]

G(X0(s); y)[�] "d�T

!
!
 
�;

Z
X�[0;�]

G(X0(s); y)[�] d�T

!
in D([0; T ] : ��q1 � R). The result now follows by using this convergence in (5.27).

6 Example

The following equation was introduced in [48] to model the spread of Poissonian point source
chemical agents in the d-dimensional bounded domain [0; l]d. The time instants, sites and
magnitude of chemical injection into the domain are modeled using a Poisson random measure
on X � [0; T ], where X = [0; l]d � R+, with a �nite intensity measure. Formally the model can
be written as follows. Denote by � "i (!), i 2 N, the jump times of the Poisson process with
rate "�1�(X), where � is a �nite measure on X, and let (�i; Ai) be an iid sequence of X-valued
random variables with common distribution �0(dy) = �(dy)=�(X). Let � > 0 be a small �xed
parameter and let c� =

R
Rd 1B�(0)(x)dx, where for y 2 R

d, B�(y) = fx 2 Rd : jy� xj � �g. Then
the model can be described by the following equation.

@

@t
u(t; x) = D�u(t; x)� V � ru(t; x)� �u(t; x) +

1X
i=1

Ai(!)c
�1
� 1B�(�i)(x)1ft=� i(!)g; (6.1)

where for a smooth function f on Rd, �f =
Pd

i=1
@2f
@x2i

and rf = ( @f@x1 ; : : : ;
@f
@xd
)0, � 2 (0;1),

D > 0, V 2 Rd and " > 0 is a scaling parameter. The last term on the right side of (6.1)
says that at the time instant � i, Ai amount of contaminant is introduced which is distributed
uniformly over a ball of radius � in Rd centered at �i, where for simplicity we assume that �i
a.s. takes values in the �-interior of [0; l]d (see Condition 6.1).

The equation is considered with a Neumann boundary condition on the boundary of the
box. A precise formulation of equation (6.1) is given in terms of a SPDE driven by a Poisson
random measure of the form in (2.17). We now introduce a convenient CHNS to describe the
solution space. Let �0(x) = e�2

Pd
i=1 cixi , x = (x1; : : : ; xd)

0, where ci = Vi
2D , i = 1; : : : ; d. Let

H = L2([0; l]d; �0(x)dx). It can be checked that the operator A = D� � V � r with Neumann
boundary condition on [0; l]d has eigenvalues and eigenfunctions�

��j; �j
	
j=(j1;:::;jd)2Nd0

;

where �j =
Pd

k=1 �
(k)
jk
, �j =

Qd
k=1 �

(k)
jk
, j = (j1; : : : ; jd),

�
(i)
0 (x) =

r
2ci

1� e�2cil ; �
(i)
j (x) =

r
2

l
ecix sin

�
j�

l
x+ �ij

�
; �ij = tan

�1
�
�j�
lci

�
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and

�
(i)
0 = 0; �

(i)
j = D

 
c2i +

�
j�

l

�2!
:

Note that f�jg forms a complete orthonormal set in H. For h 2 H and n 2 Z, de�ne

khk2n =
X
j2Nd0



h; �j

�2
H (1 + �j)

2n

and let
� = f� 2 H : k�kn <1;8n 2 Zg:

Let �n be the completion of H with respect to the norm k � kn. In particular �0 = H. Then the
sequence f�ng has all the properties stated in Section 2.4 for � = \n2Z�n to be a CHNS. Also,
for each n 2 Z, fk�jk�1n �jg is a complete orthonormal system in �n.

We will make the following assumption on �.

For some � > 0;
Z
X
e�a

2
�(dy) <1; y = (x; a) 2 [0; l]d � R+: (6.2)

Here � is a joint distribution on the possible locations and amounts of pollutants. We now de-
scribe the precise formulation of equation (6.1). In fact we will consider a somewhat more general
equation that permits the magnitude of chemical injection to depend on the concentration pro�le
and also allows for nonlinear dependence on the �eld. Consider the equation

X"(t) = x0 +

Z t

0
b(X"(s))ds+ "

Z
X�[0;t]

G(X"(s�); y)N "�1(dy; ds); t 2 [0; T ];

where N "�1 is as in Section 2.1. The function b : �0 ! �0 is de�ned as follows: for v 2 �0 and
� 2 �, b(v)[�] := b1(v)[�] + b0(v)[�], where b1(v)[�]

:
= v[A�]� �v[�] and b0 : �0 ! �0 is de�ned

by

b0(v)[�]
:
=
X̀
i=1

Ki(v[�1]; : : : ; v[�m])�i[�]; v 2 �0; � 2 �;

where Ki : Rm ! R and f�jgmj=1, f�ig`i=1 are given elements in �. Also, G : �0 � X ! �0 is as
follows. For v 2 �0, y = (x; a) 2 X and � 2 �

G(v; y)[�]
:
= aG1(v)c

�1
�

Z
B�(x)\[0;l]d

�(z)�0(z)dz;

where G1 : �0 ! R is given by

G1(v)
:
= K0(v[�1]; : : : ; v[�m]); v 2 �0;

and K0 : Rm ! R. Equation (6.1) corresponds to the case b0 = 0 and G1 = 1. We will make
the following assumption on fKigpi=0.
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Condition 6.1 (a) For some LK 2 (0;1)

max
i=0;:::;`

jKi(x)�Ki(x
0)j � LK jx� x0j; for all x; x0 2 Rm:

(b) For each i = 0; : : : ; `, Ki is di¤erentiable and for some LDK 2 (0;1)

max
i=0;:::;`

jrKi(x)�rKi(x
0)j � LDK jx� x0j; for all x; x0 2 Rm:

(c) �0f(x; a) : B�(x) � [0; l]dg = 1.

Suppose that x0 2 ��p. We next verify that the functions b and G satisfy Conditions 2.11
and 2.13. Choose q = p+ r and q1 = p+ 2r where r > 0 is such that

P
j2Nd0

�2j (1 + �j)
�2r <1.

Then the embeddings ��p � ��q and ��q � ��q1 are Hilbert-Schmidt.

We �rst verify that b satis�es the required conditions. Clearly b is a continuous function
from ��p to ��q. Also, for v 2 ��p

kb1(v)k2�q =
X
j2Nd0

(v[A�qj ]� �v[�
q
j ])
2 =

X
j2Nd0

(�j + �)
2(v[�qj ])

2 � c�kvk2�p;

where c� = supj2Nd0
f(�j + �)2(1 + �j)

�2rg and the last inequality follows on noting that, for
n 2 Z, k�jkn = (1 + �j)n.

Also, using Condition 6.1(a) it is easily veri�ed that for some C1 2 (0;1)

kb0(v)k2�p � C1(1 + kvk�p)2; for all v 2 ��p: (6.3)

Combining the above two estimates we see that b satis�es Condition 2.11(b). Next, using the
observation that � � 0 and �j � 0 for all j, we see that 2b1(�)[�p�] � 0 for all � 2 �. Also,
using (6.3) it is immediate that

2b0(�)[�p�] � C1k�k�p(1 + k�k�p); for all � 2 �:

This shows that b satis�es Condition 2.11(c).

Once again using the nonnegativity of �A and � we see that

hu� u0; b1(u)� b1(u0)i�q � 0; for all u; u0 2 ��p:

Also, by the Lipschitz property of Ki (Condition 6.1(a)) we see that

kb0(u)� b0(u0)k�q � C2ku� u0k�q; for all u; u0 2 ��p:

Combining the two inequalities shows that b satis�es Condition 2.11(d).
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Next we verify that b satis�es Condition 2.13. Note that for � 2 � the map ��q 3 v 7!
b1(v)[�] 2 R is Fréchet di¤erentiable and

D(b1(v)[�])[�] = �[A�]� ��[�]; for all � 2 ��q:

Thus Condition 2.13(a) holds trivially for b1. Also, from di¤erentiability of Ki it follows that
b0(v)[�] is Fréchet di¤erentiable and for � 2 ��q

D(b0(v)[�])[�] =
X̀
i=1

mX
j=1

@

@xj
Ki(v[�1]; : : : ; v[�m])�[�j ]�i[�]:

Using the Lipschitz property of rKi (Condition 6.1(b)) it is now easy to check that b0 and
consequently b satis�es Condition 2.13(a) as well.

Next, for v 2 ��p and � 2 ��qX
j2Nd0

jD(b1(v)[�q1j ])[�]j
2 =

X
j2Nd0

j�[(A� �)�q1j ]j
2 =

X
j2Nd0

(�+ �j)
2(1 + �j)

�2rj�[�q1j ]j
2 � c�k�k2�q:

(6.4)
Also using the linear growth ofrKi (which follows from Condition 6.1(b)), there is a C3 2 (0;1)
such that

sup
fv2��p:kvk�p�mT g

X
j2Nd0

jD(b0(v)[�q1j ])[�]j
2 � C3k�k2�q

X̀
i=1

X
j2Nd0

j�i[�
q1
j ]j

2: (6.5)

Combining (6.4) and (6.5) we get that for � 2 ��q and � 2 �q1

sup
fv2��p:kvk�p�mT g

jAv(�)[�]j2 �

0@X
j2Nd0

jh�; �q1j iq1 jAv(�)[�
q1
j ]j

1A2 � 2(c� + C4)k�k2q1k�k2�q;
where C4 = C3

P`
i=1

P
j2Nd0

j�i[�
q1
j ]j2. This shows that � 7! Av(�) is continuous and that b

satis�es (2.23).

Using the non-negativity of �A and � it follows that for all � 2 ��q, A1v(�)
:
= D(b1(v)[�])[�] 2

��q1 satis�es
h�;A1v(�)i�q1 � 0:

Also, from linear growth of DKi, A0v(�)
:
= D(b0(v)[�])[�] 2 ��q1 satis�es, for some C5 2 (0;1)

sup
fv2��p:kvk�p�mT g

h�;A0v(�)i�q1 � C5k�k2�q1 ; for all � 2 ��q:

Combining the last two estimates, for all �1; �2 2 ��q

sup
fv2��p:kvk�p�mT g

h�1 � �2; Av(�1)�Av(�2)i�q1 � sup
fv2��p:kvk�p�mT g

h�1 � �2; A0v(�1 � �2)i�q1

� C5k�1 � �2k2�q1 :
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This veri�es (2.24).

Next noting for all u 2 ��p and � 2 � that u[(A � �)(�q�)] � C6kuk�pk�k�q and �[(A �
�)(�q�)] � 0, we see that for all u 2 ��p

sup
fv2��p:kvk�p�mT g

2A1v(�+ u)[�q�] � 2C6kuk�pk�k�q:

Also, using the linear growth of rKi we see that, for some C7 2 (0;1)

sup
fv2��p:kvk�p�mT g

2A0v(�+ u)[�q�] � C7(k�k�q + kuk�p)k�k�q; for all u 2 ��p; � 2 �:

From the last two inequalities we have (2.25).

Conditions for G are veri�ed in a similar fashion. In particular note that for � 2 �0 and
x 2 Rd such that B�(x) � [0; l]d

ac�1�

Z
B�(x)

j�(z)j�0(z)dz � aC8k�k0;

where C8 = c
�1=2
� supz2[0;l]d �0(z). From this it is immediate that for some C9 < 1, G satis�es

Condition 2.11 with MG(y) = LG(y) = aC9, y = (x; a) 2 X. Note that in view of (6.2) MG; LG
satisfy part (d) of Condition 2.13. Remaining parts of this condition are veri�ed similarly and
we omit the details.
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